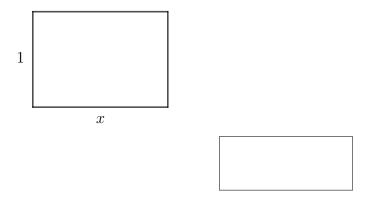
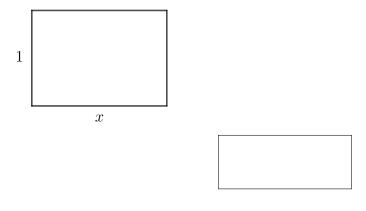
**Problem 1.** If a and b are real numbers whose average is 10, what is the average of a, b, and 16?



**Problem 1.** If a and b are real numbers whose average is 10, what is the average of a, b, and 16?




**Problem 2.** How many solutions to x + y = z are there if x, y, z are (not necessarily distinct) elements of  $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ ? Note that 1 + 2 = 3 and 2 + 1 = 3 are different solutions.




**Problem 2.** How many solutions to x + y = z are there if x, y, z are (not necessarily distinct) elements of  $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ ? Note that 1 + 2 = 3 and 2 + 1 = 3 are different solutions.

**Problem 3.** Find a value x > 1 so that a 1 by x rectangle can be cut into two congruent rectangles each similar to the original 1 by x rectangle.



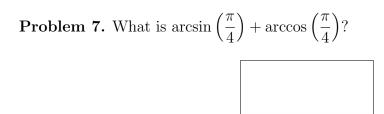
**Problem 3.** Find a value x > 1 so that a 1 by x rectangle can be cut into two congruent rectangles each similar to the original 1 by x rectangle.



**Problem 4.** How many subsets of  $\{U, G, A, H, S, M, T\}$  have nonempty intersection with  $\{U, G, A\}$ ?

**Problem 4.** How many subsets of  $\{U, G, A, H, S, M, T\}$  have nonempty intersection with  $\{U, G, A\}$ ?




**Problem 5.** I got the following message on my phone: "Your screen time was down 37% from last week for an average of 9 minutes/day." What was my screen time, in minutes, last week?

**Problem 5.** I got the following message on my phone: "Your screen time was down 37% from last week for an average of 9 minutes/day." What was my screen time, in minutes, last week?

**Problem 6.** Let *L* be the line segment in  $\mathbb{R}^2$  from (0,0) to (2,0). At each point (x,0) of *L* draw a disk of radius 1 centered at (x,0). What is the area of the union of these disks? (A *disk* consists of a circle together with the points inside the circle.)

| 1 |  |  |
|---|--|--|
|   |  |  |

**Problem 6.** Let L be the line segment in  $\mathbb{R}^2$  from (0,0) to (2,0). At each point (x,0) of L draw a disk of radius 1 centered at (x,0). What is the area of the union of these disks? (A *disk* consists of a circle together with the points inside the circle.)



**Problem 7.** What is  $\arcsin\left(\frac{\pi}{4}\right) + \arccos\left(\frac{\pi}{4}\right)$ ?

**Problem 8.** What is the largest positive integer k for which  $3^k$  divides  $\underbrace{999\ldots9}_{2019 \text{ nines}}$ ?



**Problem 8.** What is the largest positive integer k for which  $3^k$  divides  $\underbrace{999\ldots9}_{2019 \text{ nines}}$ ?



**Problem 9.** Detective Uga comes across a combination lock requiring a 5-digit keycode, with each digit in  $\{0, 1, 2, ..., 9\}$ . Dusting for prints reveals that the combination only uses the digits 2, 0, 1, 9 and only those four digits. How many possible keycodes use those four digits?

**Problem 9.** Detective Uga comes across a combination lock requiring a 5-digit keycode, with each digit in  $\{0, 1, 2, ..., 9\}$ . Dusting for prints reveals that the combination only uses the digits 2, 0, 1, 9 and only those four digits. How many possible keycodes use those four digits?

**Problem 10.** If p(x) is a degree 2 polynomial with positive integer coefficients, with p(1) = 11 and p(10) = 236, what is p(-1)?

**Problem 10.** If p(x) is a degree 2 polynomial with positive integer coefficients, with p(1) = 11 and p(10) = 236, what is p(-1)?

