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1. Introduction: In his famous paper [An] Andreotti introduced the
following staterment of the Torelli theorem for Jacobians in terms of
the divisor varieties which parametrize the theta divisors: two
smooth connected curves C1, C2 of genus g are hirationally
equivalent if and only if their symmetric products C1(g'1), (32':8'1:|
are birationally equivalent. Since i1sormmorphism of the theta divisors
BiC1), ®(Cz) implies birational equivalence of the symmetric
products Ci(g'l), Cz(g'” by Riemann's theorem, and since the
smooth curves Cq1, C2z are birational if and only if they are
hiregularly isomorphic, Torelli's theorem that the Cj are isomorphic
if and only if the B({Cj) are isomorphic iz a corollary; indeed it follows

that the Cj are isomorphic if and only if the ®(Cj) are bhirational. In



particular birational and hiregular equivalence coincide for the
symmetric products. The analogue of the symmetric product, for
the Prym variety (P,Z) of a double cover C/C of a smooth connected
curve C of genus g, 1z the special divisor variety XC Gl2g-2) of
effective, even, precanonical divisors D on € ie. divisors D in Gl2g-2)
with Nmi(D) in |wcl and hU{D) even. The varieties X are irreducible
and normal when C is non hyperelliptic by [Be]. Since ¥ is
generically a P1 bundle over Z, biregular isomorphism of two Prym
theta divisors Z1, Z2 implies birational equivalence of the varieties
%1, ¥2. Hence if hirational equivalence of the ¥Xj were to imply
1sormorphism of the double covers 51;"01, then Torelli's theorem for
Prym warieties would follow. Since counterexamples to the Prym
Torelli problem [Do, Vell are known for doubly covered curves C of
Clifford index ¢ Z, this result cannot hold for the special divisor
varieties of such double covers. In wiew of Donagi's conjecture [Do,
L3, cf. 3V3], it is plausible howewver that it should hold for doubly
covered curves of Clifford index 2 3. In this paper we consider the
guestion of what is determined by the hiregular isormnorphism class
of the divisor variety X. We show that for any two doubly covered
non hyperelliptic curves Ci/Cy, if dim singZj < dim(Pj)-4, (ie. if §i/C§
are "'not on Mumford's list"), then biregular isomorphism of the
divisor varieties ¥j does imply isormmorphism of the double covers
¢i/Ci. The method of recovering C/C from X generalizes the
construction used in [NR] to classify (even stable) rank 2 vector
bundles on curves of genus two (and generalized later to higher rank

and genus). Briefly we show X determines Z, then represent X as



P(E) for a suitable "rank 2 sheaf' £ on =, define NR(E) = {7 in Picl(E)
' hU{€e1) =z 0}, and check this invariant is independent of choice of
£, up to translation in Pic0{Z). Then we show Picl(Z) = P, the Prym
variety of C/C, and compute for a convenient choice £p assoclated to
a point p of C, that NR(Ep) corresponds under this isomorphism to
ap(al = the Abel Prym model of € in P. Finally, ap(al determines
the doukle cover C/C.

In particular our result holds for all doubly covered C with CLff(C) :
3. This means Prym - Torelll for these curves can fail only if two
such divisor varieties ¥j can be birationally i1somorphic, have the
same Albanese image, and yet be biregularly distinct. A corollary of
our result is that Donagi's conjecture is equivalent to the assertion
that two special divisor varieties X{C1/C1), X(C2/C2), parametrizing
the same theta divisor =, where CLff(Cj) 2 3, are not only
birationally but also biregularly isomorphic.

cection 2 of this paper contains definitions and conventions ahout
Prym wvarieties for the reader's convenience. The statement and
outline of proof of the main result are in section 3, and the details of
the proof are in sections 4 through 8. To the best of our knowledge,
the first argument of this type, recovering a curve from a
Narasimhan Ramanan invariant for bundles over the Jacoblan of

that curve, was by Kempf, in [Kel; KeZ, cor 4 4.c, p253].

2. Definition of the Prym variety (P,Z) and the divisor
variety X
2.1 The Prym wvariety



Given a connected etale doukle cover m:.C—C of a smooth non
hyperelliptic curve C of genus g 2 3, the kernel of the associated
norm map Nm:PicP(&)— Picl{C) on line bundles has two connected
components Nm~1(0) = Pg U Py, [Mu, bottorn p.329, where Nm = |,
cf. (b), bottorn p.341]. If Pp is the component containing 0, then the
principal polarization of the Jacobian of €, considered as a
cohomology class & in HE(PicD{),Z), restricts on PQ to twice a
principal polarization z, ie. 4|/Pg = 2z. The resulting pair (Pp,z) is by
definition the principally polarized Prym wvariety determined by .
Since C has genus g, the double cover C has genus 2g-1, and since
Nm is surjective Pg has dimension p = g-1. If 1.€— € is the fix point
free involution associated to the double cover mw, then for each point
pon Clet p' = vip), and define the Abel Prym map ap:ﬁ—> Pn
associated to a point p on € by aple) = algp) = (1-1{g-p) =

g-p —g+p This is an embedding for non hyperelliptic C.

22 The Prym theta divisor

The polarized Prym wariety (Pp,z) has a distinguished "theta divisor"”
determined up to translation, which mavy be described as follows.
The inverse image Nm'l(wc) of the canonical line bundle w¢ of C,
under the norm map NmPic22 2({)— Pic22-2(C) has again twao
connected components [Mu, pp. 341-2], Nm~1{wg) = P U P~, where P
= {L: Nm(L) = w¢ and hY{L) is even} and P~ = {L: Nm(L) = w( and
hU(L) is odd}. Since 2g-2 = -1, the image of the Abel map
%:0128-2) 5 Pic28-2({) is the natural model BCPic28-2(C) of the
theta divisor for the Jacobian of G, and by [Mu, Propf(a), p.342], P.&



= 2Z, where Z is a natural model for the theta divisor of the Prym
variety determined by G/C. Analogously to representing the
Jacobian variety (Pic0({&), &) by the pair (Pic28-2{(), 8), we may

consider the pair (P,Z) to represent the Prym wvariety (Pp,z).

2.3 The divisor variety X defined by G/C

We define the divisor variety as X = &~ 1{P), where
%0028~ 2) 5 Pic228-2(() is the Abel map parametrizing the theta
divisor of €&, and PCPic28 2(() is the "even' half of the set of
precanconical line bundles on € with respect to m, ie. [Wel, p99] X =
{Din ¢(2g-2) such that Nm(G(D) = w and hU(& G(D)) is even), is
the set of effective, even, "precanonical" divisors on € with respect
to m. When C is non hyperelliptic ¥ is normal and irreducible [Be,
Cor. of prop.3, p.365]. Denoting by ¢:X—PF the restriction of the Abel
map &« to ¥, the image set Z = @(X) C P of effective even
precanconical line bundles on ¢ with respect to m, is the natural
model of the theta divisor for the Prym wvariety P,

By Riemann's singularities theorem ZCsing®, and since P.8® = 22, all
smooth points of = are double points of ®. Hence by Abel's theorem
the fiber of the Abel map «:5(28-2) 5 Pic28-2({) over a smooth point
of = is isomorphic to P1, and by Grauert's theorem, X is a Zariski P1
bhundle over Zzm. Thus when C is non hyperelliptic, ¥ is a normal
irreducible variety fibered by ¢ over smooth points of Z by copies of
F1l, and over singular points of = by projective spaces of odd
dimension @ 1. {It can happen that ¢~ 1{L) = Pl for some singular

points L of =, by [Mu, Prop. bottom p. 343].



3. Statement of main Theorem, outline of proof

We will prove the following Torelli theorermn for the divisor varieties
X defined in section 2.

Theorem 3.1. If C is a smooth non hyperelliptic curve of genus g 2
3, and m:C—C a connected etale double cover such that either = is
smooth or dim singZ ¢ dim(P)-5, then X determines the double cover
mE—C.

Remark 3.2.1. Recall Mumford's list [Mu, p.344] of doubly covered
curves of genus g : 3 which do not satisfy the hypotheses of
Theorem 3.1. They are: hyperelliptic curves C of genus g ¢ 3; curves
C with g » 5 and either trigonal or bielliptic (ie. with either a degree
three map to P1 or a degree two map to an elliptic curve); curves C
with g = 4 or 5 and possessing a line bundle L with 2L = K¢, h0(C,L)
z 0 and even, and hU{C,Len) even, where 1 is the square - trivial
line bundle on C corresponding to the double cover w; curves C with
g = B and having a line bundle L with 2L = K¢, and hP(C,L) : 3 and
odd and hU(C,Len) even. Note by [3VZ2, bottom p.366, if C=Cis a
connected etale double cover with both €,C hyperelliptic, and g(C) =
3, then Z is a smooth curve of genus 2, but ¥ = Zx Pl does not
determine C/C.

Remark 3.2.2. One use we will make of the hypothesis that mw is
not on Murnford's list is that Z is then locally factorial [BD], which
relieves us of the task of arguing that the various Weil divisors we
construct are Cartier divisors. It also allows us to use results from
[BD] in which this hypothesis is made, and to make the argument in

Lemma 5.3. where it gives us the requisite amount of depth. It



seems probakble that the theorem is also true assuming only the

hypothesis that C is not hyperelliptic.

3.3 Summary of the proof

3.3.1 The Narasimhan Ramanan invariant

Narasimhan Ramanan in [NR] defined an injective map which
associates to a stable even rank two vector bundle £ over a curve =
of genus two, an invariant C in the family of curves {(with
involution) in the linear equivalence class [2Z], lying in the Jacobian
of . Using the fact that in this case J(Z) = P(C/C), Verra's analysis
[VeZ] of the fibers of the Prym map in this genus, and work of H. Yin
[Yi], we showed in [3V2] that P(£) = X({/C), and that the NR
invariant gives an inverse, for doubly covered non hyperelliptic
curves C of genus three, to the assiznment G/C— X taking a double
cover to its special divisor variety X, which in that case is a P1
bundle over the theta divisor Zc J{Z) = P(C/C). It is well known
that the generalization of this invariant to stable even vector
bundles of rank two over non hyperelliptic curves C of higher genus,
takes values in the linear system |28(C)| in the Jacobian of C, and
again classifies such vector bundles [BV]. If we consider the generic
Prym Pl bundles ¢ X— = defined by the special divisor varieties X
associated to those doubly covered curves G/C "not on Mumford's
list", we will define an analog of the NR invariant for these, this
time with walues in the set of curves of twice the "minimal"
homology class in P, and show that for these douhble covers, this

invariant again provides a left inverse to the assignment C/C— X



taking a double cover to its special divisor variety X, thus

establishing injectivity of the latter assignment.

3.3.2 Outline of proof

First we will recover from X hoth the Prym wvariety (P,Z) and the
Abel map ¢ X—=ZCP, by applying Serre's criterion for an Albanese
map to show P is the Albanese variety of X, ¢ is the Albanese map,
and = is the Albanese image of X. Next we show for any coherent
reflexive 'rank Z sheaf' £ on = such that X|Z5m = PI(E|Zsm) and
c1iElZsm) = ElZsm (where E= c1{G=(Z))), that the 'Narasimhan
Ramanan' invariant NR(E) = {t in PicU(Z) such that h0i{teE) = 0} is
determined by X up to translation in Pic0{Z). Then we prove that
associated to any point p of € there is such a sheaf Ep for which
NR{Ep) is naturally isomorphic via the isomorphism Pp = Picl(Z), to
the "Abel Prym" model ap(éj of € in Pp. Hence X determines NR{Ep)
= ap(@}l = ¢ up to translation in Pic0{Z), in particular up to
isomorphism. By an argument of Welters [We2] using Matsusaka's
"strong" Torelli theorem [Ma] for curves, apl €) also determines the
involution on ¢ hence the double cover m:£—C. If the Prym
canonical map C— P22 has degree one, eg. if C has no glg, then w
can be recovered as the (normalization of the) Gauss map on ap(@}l.
The remainder of the paper is devoted to the details of the proof.
Since we have already proved Theorem 3.1 in [S3VZ] when g = 3, we
may assume g : 4 throughout the paper, although some arguments
will be stated as well for g = 3. In section 4 we show that g X—=ZCP

iz the Albanese map of Z. In section 5 we show the invariant NR{X)



is uniquely defined up to isomorphism by NR(E) for any suitable
rank Z sheaf € on Z as above. In section 6 we construct for each
point p on € a rank 2 sheaf Ep on Z with P{EplZsm) = XZsm. In
section 7 we compute that c1(EplZsm) = El2sm. In section 8 we

compute that NR(Ep) = apl (), and complete the argument.

4. Recovering (P,Z) from X as an Albanese variety
Proposition 4.1. Assurmne that C is non hyperelliptic of genus g 2 4.
Then the morphism ¢: X — Z C P iz an Albanese map for X.

Proof: This follows from two lemmas:

Lemma 4.2. The maps ¢ X—== and Z—P, and thus also their
composition ¢:X—P, induce isomorphisms on Hi 7.

Proof: Since Z C P iz an ample divisor on a smooth projective
variety of dimension @ 3, by the Lefschetz hyperplane theorem the
inclusion = — P induces an isomorphism H1(Z,#) — H1(P,Z). Since
all the fibers of @ ¥ = = are (complex) projective spaces, we claim
that the induced map gps: H1{X,Z) = H1(Z,Z) is an isomorphism. By
universal coefficients it will suffice to show that the induced map
p*: H{Z,Z/n) - HL{X,Z/n) on 1st cohomology is an isormmorphism for
all n (including n = 0). The Leray spectral sequence for the map ¢:
¥ — Z and coefficient sheaf £Z/n on ¥ provides an exact sequence
(#) 0 = HUZ,p£(Z/n)) - HUX,Z/n) - HI(Z,R1yp.(Z/n)). However,
the stalk of the sheaf Rlps({Z/n) at a point v € = is computable as
Hi{p~1(y),Z/n) and here o~ 1(y) = PY so HO{(p~1{v),Z/n) = Z/n and
Hl{p~1(y),Z/n) = 0. Thus p+(Z/n) = Z/n and Rlp«(Z/n) = 0, and
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the exact sequence (#) implies HI{Z,Z/n) - H(X,Z/n) is an

izomorphism. QED.

Lemma 4.3. If ¥ is irreducihle, reduced, P is an abelian variety,
and @ X—P induces an isomorphism g« H1(X,Z) — H1(P,Z), then g is
an Albanese map for X.

Proof: Serre [Se; Th. 5, p. 10; Th. 10, p. 19] has shown for any
irreducible variety X, existence of an Albanese map f: X — A such
that the natural map fx H1(X, £) = H1(A, Z) is surjective, and
satisfying a universal mapping property for morphisms from X to
abelian warieties. Thus, after changing f by a translation, there
exists a homomorphism h: & — P such that hef i1s the morphism ¢:X
— P. Now we have a composition X = A — P inducing maps H1(X,
Z) — Hi1(A, Z) — H1(P, ) such that the first map is surjective and
the composition is an 1somorphism. Thus the first map is also
injective, hence an 1sormorphism, as is the second map. then since
the homomorphism h: & — P of abelian wvarieties induces an
isornorphism Hi(4&, £) — H1(P, £) on 1st homology, h must he an
isormorphism. Since hef is the morphism @:X — P, thus (hef)(X) =
p(X) = Z, so h induces an isomorphism from f{X) onto =Z.

QED for Lemma 4.3 and also for Proposition 4.1.

5. Definition of the Narasimhan Ramanan invariant NR(X)
For any coherent sheaf £ on Z, we could consider the set {T in Pic(Z)
such that h9(Eet) = 0} but it is not obvious in which component of

Pic(Z) we find interesting information about £, nor for which
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sheaves £ the invariant gives useful information about =Z. The most
natural version of the original Narasimhan Ramanan invariant [NR]
for vector bundles over a curve C is perhaps to consider (stable)
bundles £ with det(E) = w and take NR(E) = {7t in Pic?(C) such that
hli{Eet) = 0}. In particular it is crucial to choose correctly the
(relationship between the) degree of £ and the degree of the
elements T of NR(E). A technical point in giving an generalization to
the present setting is that X is a P1 bundle in general only over the

smooth points of =, so we need to check that with an appropriate

global hypothesis, we can restrict attention to the part of ¥ lying
over the smooth points of Z. We also need to choose the right chern
classes for our £ and our t. The appropriate generalization (which is
analogous to the natural choices above) is as follows:

Given the Abel map ¢: X = Z, let X|Tgm denote g~ 1{Tsm).
Definition 5.1. If €/C is a double cover of a non hyperelliptic curve
C, and £ is any reflexive coherent sheaf on = whose restriction to
Csm 1z a rank Z vector bundle satisfying the two conditions:

(a) c1{El=sm) = ElZsm € H2({Zsm.Z), and

(b) P(EIZsm) = XZsm.

Then define NR(E) = {1 in Pic0(Z) such that hO(Ee 1) = 0}

Next we ask how much this invariant depends on the choice of €.
Proposition 5.2. Assume C/C satisfies the hypotheses of Thm 3.1
and £1,£2 are sheaves on Z with the properties of Definition 5.1.

Then £1 2 M®E2 for some line bundle T in Picl(=).

Proof: This will follow from the next lemma.
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Lemma 5.3. If C/C and £1,E2 satisfy the hypotheses of Prop. 5.2,
then: (i) €11=sm 2 (E2|1=sm) @I for some line bundle 1N on Zsm and,
for any such M, Zc1(MN) = 0 in HZ{Zsm,Z).
(ii) If any I as in (i) extends to a line bundle TN on =, then 1 =
Eze on = and T € Picl(Z) {(equivalently, c1({TN) = 0 in HE(Z,Z)).
(iii) In fact there exists J € Pict(Z) such that €1 = E2& 7 on =.
Proof: (i) Since £1|=sm and E2|=sm are vector bundles on Zsm
vielding the same projective bundle (ie. P(£1|Zsm) & X|Zsm =
F{Ez|=sm), and the isomorphisms commute with the projections to
Tarm/, it is & standard exercise that £E1|5sm = (E2|Zsm) @ I for some
line bundle NIl on Zsm, [cf. Ha, p.171, ex. 7.10d, but note the opposite
convention there, p.162, on P(E)]. Now take the 15t chern class of
both sides: in HZ(Zem.Z), c1(E11=sm) = c1({E2[Tsmlie M) =
c1lE2|TsmI+2c1(IN) since €2|=sm is a rank 2 vector bundle. Then,
since c1(E11Zsm)? = ElZsm = c1(E€2|=sm), we get 2e1({IN) = 0.
(ii) Assuming that Il extends to a line bundle T on =, then 1 and
Eze M are hoth reflexive coherent sheaves on =, and there is an
isomorphism between the restrictions £11%sm and (Ez2e M)Tsm
(= (E2|1=sm)e ). Therefore, by the unique extension property of
sections of these sheaves (using depth : 2 along Sing(Z) because C is
non he and g(C) @ 3, [cef. 3V4, proof of Lemma (4.5)]), there iz an
isomorphism between £1 and €2 TN on =.

Next consider o = c1(JN) € HZ{=,Z). We want to show that « = 0
(since Picd(Z) = keri{ct: Pic{Z) — HZ(Z,Z)}, and we then conclude that

M € PicliZ)). In fact it will suffice to show that Ze = 0 since
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HZ(Z,Z) is torsion free. [Indeed, when dimiZ) > 2, ie. when C has
genus g > 9, the Lefschetz theorem gives immediately an
isormmorphism HZ(=,Z) = HZ(P,?), which is torsion free. When = has
dimension 2 or 1 then (P,Z) is the Jacohian J(Z) of a curve Z of
genus p = 3 or 2, and we can give a direct argument: if p = Z, then
= is a (smooth) genus 2 curve and HZ(Z,Z) = Z. If p = 3, then = is
either the symmetric product £{2} (if £ is nonhyperelliptic) or Z{(2)
with the g12 collapsed to a point if 2 is hyperelliptic. In either case,
HZ(Z,Z) injects (e.z. use the Leray s.s. in the hyperelliptic case) into
HZ(z(2) Z) which is torsion free (by Macdonald's results on the
cohomology of symmetric products)] Thus it remains to show that
if o = c1(TN) € HZ(Z,Z) then 2« = 0. We know that 2« restricts to
zero in HZ(Z s, Z) (since TN ®Z restricts to M2 and c1(M®2) =

2c1(M) =0). Thus, consider M®Z € Pic(Z) and the diagram:

HI(Z,5) — Pic(Z)
I I

'S h's

Hiizsm,ej — Pic(Zsm)

Since 2c1(M) = 0 in HZ({Zsm,Z), by exactness of the exponential
SEqUENCE MeZ ¢ im{HNZ s, 0) = PiciZem)}. Moreover the left
vertical map (H1(=.9) = H(Z5m.0)) is an isormorphism. [This
follows from the exact sequence of local cohomology
HlsingE([ﬁ')*H1(E,B)—>H1(Esm,6)—>HZSgE(G) and the vanishing of the

two groups Hlsjngz(ﬁ) = stjngz(ei = 0. These in turn vanish by
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[Gr, Prop. 14, p5], since as long as singZ has codimension @ 3 in =,
the depth of 0= along singZ is : 3 which implies vanishing of the
local cohomology sheaves, which by the spectral sequence in [Gr,
Prop. 14]. implies vanishing of the local cohomology groups above]
Therefore we can modify 22 by an element p of PicP(Z) to get an
element p = (M®2)ep~1 € Pic(Z) such that ul=sp is trivial in
Pic({Zsm). But then p must be trivial in Pic(Z) since if a Cartier
divisor D on = becomes (complex analytically) principal on Zsm, ie.
the divisor of a meromorphic function f on Zgm, then since Z is
normal, f is the restriction of a (unigque) meromorphic function f on
= and D is the divisor of f. Therefare, JN®Z = pep = p € Picl(Z), =0
2o = c1(MN®2) = 0 in HZ({Z,Z).

(iii) Let Il be anvy (algebraic) line bundle on Zsm such that E|Zsm =
(EplZsmle . Since for m not on Mumford's list we have
codim=(3ing(Z)) : 4, hence Z is locally factorial. Then there exists a
line bundle TN on Z extending M. Indeed, represent N by a (Cartier)
divisor D on Zsm and then take the closure D of D in X as a Weil
divisor. Since = is locally factorial, D is Cartier on = and hence TN =
§=(D) is a line bundle on = extending =sm(D) = M. Then from part
(2) it follows that £ = Ep@:fﬂ on = and TN € PicO(Z). QED. for

Lemma 5.3 and hence for Proposition 5.2.

Lemma 54. If £/C and E satisfy the hypotheses of Prop. 5.2,
then ¥ determines NR(E) up to translation in Pic0(Z).
Proof: If £1,E2 are two reflexive coherent sheaf on = whose

restrictions to Zgm are rank 2 vector bundles satisfying the two
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conditions c1(Ej) = E, and P(Ej) = ¥, then by Proposition 5.2 above,
£1 = Eze N, for some TN in PicliZ), hence NR(E1)® TN = NR(EZ).
QED.

Definition 5.5. If C/C and E satisfy the hypotheses of Prop. 5.2 and
¥ is the associated divisor variety, then define NR(X) = NR(E), taken
only up to translation in Picl{Z).

Remark 56. So far we have shown the unigqueness but not the
existence of the invariant NR(X), because we have not yet proved
sheaves £ exist satisfying the hypotheses of Prop. 52. In the next
section, for each choice of a point p in G we will produce a rank 2
sheaf Ep with the desired properties, by pushing down a restricted
Poincare line bundle for € over Z. It will follow from the
computation of NR{£p) in the subsequent sections that just as in the
case of rank 2 stable bundles over curwves, the invariant NR(X)
classifies those varieties X arising from C/C not on Mumford's list, in
the sense that X (modulo isomorphism) and NR(X) {(modulo

translation) are equivalent data.

6. Construction of effective Poincare line bundles Lp on CxZ
6.1 Motivation

We want to prove the existence of a sheaf £ satisfying the properties
in Proposition 5.2, ie. a coherent reflexive sheaf £ on = whose
restriction to Zgm iIs & rank 2 vector bundle such that c1(E|=sm) =
ElTem € HZ(Zsm,Z), and P(E|=sm) 2 X|=sm. Since for L a smooth

point of Z, the fiber p~1{L) in X is isomorphic to the pencil [L|, we
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would have P(E|Zsm) & Xl|Zsm (by Grauert's theorem) if £ were a
vector bundle over g with fiber HJ(Z L) over L. This in turn
would be true if £ were a "Poincare line bundle" on € x Z such that
EIEx{L} = L, and we set £ 2 w4 (L) where m:(xZ—=Z= is the
projection. Thus we want to lock for suitahle Poincare bundles £ on
CxZ. Since furthermore w«(L£) is effective if and only if L is
effective, and NR({w (L)) is defined in terms of effective twists of

ms (L), computing NR(m (L)) will boil down to finding effective
Poincare bundles (with given chern class), so it is natural to begin
by looking for effective Poincare divisors on CxZ. [Assuming C
satisfies the hypotheses of Thm 3.1 makes this easier since then =
and hence CxZ are locally factorial (see Remark 3.2.2), so we can
specify Cartier divisors by giving the underlying Weil divisor. This
does not seem to be crucial in what follows, but it is convenient ]
We will define next an effective Poincare divisor Sp by pulling back
a family .Dp of "hyperplanes” in the pencils |L], by the universal

family ¥ of rational maps defined by the line bundles L in Z.

6.2 The fundamental divisors .DpC X
For any point p in €, if £(28-2)oDp = {D in &(2872) : D » p}, then Dp
1z an ample Cartier divisor on G(2g-2). (The pullback of Dy to the

cartesian product TTC, is the tensor product of the pullbacks of the
ample bundles §Cip) on each factor)

Definition 6.2.1. For any point p in €, define an ample Cartier

divisor Dy on X, by X2Dp = {D in XC Gl2g-2) .D: p} = Dp-X.
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Lemma 6.2.2. If C is nonhyperelliptic of genus g » 4, €/C is any
douhble cover satisfying the hypotheses of Thm. 3.1, and p i1s any
point of € , then the divisor ;Dp on ¥ is reduced and irreducible.
Proof: Assume first g{C) : 5. Then since Dg is ample for all g, the
irreducihility of Dp follows from the irreducibility and reducedness
of the intersection Dpﬂ ch for p # g, proved in [BD, p615] whenever
C i1z neither hyperellptic, trigonal, nor a double cover of an elliptic
curve. If g = 4, the irreducihility and reducedness of Dpﬁ Dq for g
general i1s proved in Claim 6.4.9 helow, so Dp 1z irreducible if g = 4 as
well.

Alternately the method of [Be, Prop.3, p.365], analyzing the
ramification and degree of the map defined by the linear series
[Kg-mip)-migll, can be applied directly to the irreducibility of Dy by
analyzing the map defined by |[Kg-m(p)l. In fact Dp can be shown to
be irreducible for all connected etale double covers of non

hyperelliptic C with g(C) > 3 and any point p on ¢. QED.

Remark 6.2.3. The divisors Dp provide distinguished gquasi sections
of the Abel map @ X—Z in the sense that the restriction LpchDp—)E 1s
a hirational morphism. l.e. since the fibers of ¢ are projective spaces
of dimension 2 1 and it is one condition to contain p, gp is a

sur jective morphism of varieties of the same dimension whose fibers
are projective spaces, hence in general single points. Since ;Dp 1s
reduced and irreducible, .Dp meets a general fiber of ¢ in one

reduced point, and thus we mavy consider Dp generically as a family
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of "hyperplanes” in the family of pencils |L| for L in Z.
We will construct a natural Poincare divisor by pulling back ;Dp by

the universal rational map ¥ on CxZ discussed in the next section.

6.3 The universal rational map ¥:CxZ--->X

Consider the map ¥:ExZ---3X which is the disjoint union over = of
the rational projective maps pL:C--->|L| defined by those points L of
= which define pencils. [Note that since |L| iz a pencil, |L| and |L|* are
isomorphic] If €xZ2G = {{g,L): |L| is a pencil, and g is not a base
point of |[L|} then ¥ is & morphism on G defined by ¥{q,L) = the unigue
divisor D in |L| containing q. We claim the complement of @ in CxZ=
has codimension 2 2. If we fix g, the set Zg of those L in = for which
g 1s & base point 1z the image of the exceptional locus of Dq under
the birational map cpq:Dq—> =, hence Zg has codimension 2 2 in =,
since = iz normal when C is non hyperelliptic. Since the locus of
pairs (g,L) for which g is a base point of L meets each fiber gqxZ in a
set of codimension @ 2 in Z, this locus of pairs has codimension 2 2 in
CxZ. Moreover the set of L's such that L is not a pencil lie in the
singular locus of Z, and thus Z normal again implies the set of pairs
{{g,L): L not a pencil} has codimension 2 2 in €xZ. Thus the "bad"
locus B = €xZ - G, where ¥ is not defined by the prescription above,
namely B = {pairs of form (qg,L) such that either g iz a base point of
ILI, or IL| iz not a pencil}, has codimension @ 2 in CxZ.

Since each Zg has codimension @ 2 in =, the set Z = UgZg = {line
bundles L in = with at least one base point} has codimension 2 1 in

=. Thus Z normal implies W = ZUsingZ has codimension 2 1 in Z. If
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U = Z-W, then X2¢p H{U)=U is a P1 bundle and ¢xUCq, ie.
v:CxU—=p H{U)CX is a morphism. Since for L in U, yL:€—|L| has
degree 2g-Z, both the morphism ¥:CxU— ¢~ 1{U) and the rational
map ¥:.CxZ--->¥X have degree 2z-2.

6.4 The effective Poincare divisor Sp C CxZ

Choose any point p of €. Let ¥:CxZ--->X be the rational map defined
in the prewvious section with domain of definition G, and DpCX the
fundamental reduced irreducible divisor from section 6.2,

Definition 6.4.1. Define the pullback Cartier divisor G 2y *(Dp) (as
a set) = {(g,L) in G : ¥ig,L) is in on}, and let Sp be the closure in CExZ
of the Cartier divisor H*(;Dp); 1.e. take the closure of each component,
with the same multiplicity.

Remark 6.4.2. Since CxZ is non singular in codimension 3 for €/C
not on Mumford's list, the closure in €xZ of each component of the

pullback divisor ¥ *(Dg) is a Cartier divisor in CxZ.

We want to describe the divisor Sp geometrically. We claim that as
a set Sp = {all (g,L) in CxZ such that L belongs to plDpndgl}. More
precisely Sp 1s reduced and has exactly two irreducible components:
{p}»xZ and the closure in CxZ of the irreducible set of all {{g,L) such
that: p # o and L belongs to p{Dpndgll. This will be proved in the
next two lermmas. (see also Remark 6.4.11 helow )

Lemma 6.4.3. H*(Dp) is reduced, hence also Sp is reduced.

Proof: If G is the domain of regularity of ¥ and U = Z-% is the open

subset of line bundles L in Zsm which have no base points, recall
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that €xUcCG, and ¥:.CxU—¢ 1{U)CX is a morphism such that
(p'll:U}—>U is a Pl bundle, and for every L in U, yL:.C—ILl is a
morphism of degree 2g-2.

Claim 6.4 4. H*(Dp)ﬂ(éx U) is dense in every component of §*(Dp).
Proof: For this it suffices to show that no component of ¥*(Dp) is
contained in Cx(Z-U). Since Z-U is a disjoint union Z-U = singZ v
(Z~Zsm?, and singZ has codimension 2 Z in =, it suffices to show no
component of E*(Dp) is contained in Cx{Z~Zsm). Since Zp also has
codimension 2 2 in =, it suffices to show this for éx({Z—Zp}nzsm).
For this we compute the dimension of §*(Dy) n(éx({Z—Zp}nzsm)) by
projecting onto the factor ({Z-Zpi~Zsm). Since for L in this set, |L| is
a pencil for which p is not a base point, only one divisor of |L]
contains p. Hence ¥(g,L) cannot lie in Dp unless g 1s In the finite
support of that divisor. Hence ¥ * (D) n(éx({Z—Zp}nzsm}) projects
finitely onto the factor (1Z-Zpi~Zem), hence the part of h‘*(on) in
this intersection has dimension at most that of Z. Since dim(Z) ¢
dim (CxZ) - 2, no component of ¥ *(Dp) lies outside of CxU. QED for
Claim 6.4 .4.

Now we mavy restrict attention to the pullback of Dp by the finite
morphism of degree 2z-2, ¥:.CxU— q:u'l(U). [t follows from this and
Claim 644 that every component of ¥*(Dp) dominates Dy, We will
find an open dense set of Lp_l':U)nch over which ¥ 1s not ramified.
Claim 6.4.5. A general divisor D in JDp, hence also in Lp_i(U)ﬂch,
has no multiple points.

Proof: Consider the norm map Nm:X—|wgl on divisors, and note
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that any point of ¥ representing a divisor with a multiple point
maps via Nm to a divisor in |lwgl with a multiple point. Since Nm
defines a finite map from Dp onto the hyperplane Nm(Dp} =

lwe - Bl + p = Hp in lwcl, where p = w(p), it suffices to find an open
dense subset of this hyperplane containing no multiple divisors.
Since the canonical map on the non hyperelliptic curve C 1z an
embedding, lwg - Pl is base point free, Hence the general divisor in
lw - Bl does not contain B, and by Bertini the general divisor is not
multiple. [Take a general hyperplane in canonical space through p
to cut such a divisor.] Then every point in the preimage of that
open dense subset of [w - Bl + P must consist of non multiple
divisors. Since the preimage of that set 1z dense in ;Dp we have a
dense open subset of Dp consisting of divisors of distinct points. QED

Claim B6.4.5.

Claim 6.46. & general D in l:p_lfU)ﬁch, iz not in the branch locus
of ¥.

Proof: We must show that a general D in Lp_]-':U:'nch iz not the
image under ¥ of a point of CxU at which the differential of ¥ has a
non zero kernel. Now if L = §(D) and a tangent vector to CxU at
(g,L) were killed by the differential of ¥, composing with ¢ shows it
rmust be killed by projection to U, hence must be tangent to Cx{L}.
But then the restriction of ¥ to Cx{L}—=|L| would be ramified at (g,L)
hence branched over D. But this restriction is branched precisely
over divisors D of |L|] with multiple points. Since a general D as in

Claim B.4.5 has no multiple points, it 1s not in the branch locus of
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this restricted mapping. QED Claim 646 and Lemma 64.3.

Now that Sp is reduced, it suffices to describe it set theoretically.
Lemma 64.7. As a set, CxZ D Sp = Ullghxgp({Dpndy), for all g in ¢
ie Sp = {all (g,L) such that L belongs to p{Dpndgl}. More precisely
Sp has exactly two irreducible components: {pixZ and the closure in
CxZ of the irreducible set of all {{g,L) such that: p 2 g and L belongs
to plDpnDglt.

Proof: Since we know by Claim 644 that Sp is the closure of
K*(Dp)ﬂ(ﬁx U) in CxZ, it suffices to describe the components of
x*(ch)n(ﬁxU) = {{g,L) where L in Zsm is a pencil, g not a base point
of L, and the unique divisor of |[L| containing q also contains p}.

It i1z useful to consider, in addition to the set CxU on which ¥ is
regular, also a complete blowup of €xZ on which § becomes regular.
Thus consider in €xX the incidence divisor I = {{g,D): D : g}, and the

restriction to [ of the “"Abel map” 1xgp CxX— ExZ.

Claim 6.4 8.1 is irreducible and maps birationally to CxZ.

Proof: The proper projection f:CxX— € onto € fibers [ by the fibers
f=1{q) = Dy = {D in X with D2g} which we have just seen in Lemma
622 are reduced and irreducihle. Since the Dq are all divisors in X,
hence all of the same dimension, [ is irreducible, [3h, Thm 8, p.61].
Now, over the set CxU the map [—= €xZ has singleton fibers hence is
hirational, since for each (qg,L) in Cx U, there is a unigue divisor D in
¥ containing . In fact since CxU is smooth, the map is an

isomorphism over CxU. QED for Claim 6.4.8.
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Now if m1— X is the restricted projection €xX—X to the second
factor, then m = the (unigque regular extension of the) composition
vollxg)l—CxZ---3X, and since m and ¥ differ by the isomorphism
1x@ over the open set p~l{U)CX, we have TH*(Dp)D(1x)*(Sp). In
fact we claim these are equal. To see this, we will show the right
hand side has at least two irreducible components while the left

hand side has at rmost two. Consider first the restriction Ip of the

I

incidence divisor [ to 6><..:,Dp; ie. Ip = {{g,D):D 2 g and D @ p} (NOTE:

when p # g this means D @ p+qg, but when p = g it means only Dzp).
Then Ip = w'l(Dp) under the projection mI—=2. So the irreducible
components of m*(Dp) are precisely those of I = Ug {gix{DpnDg)
={plxDp U closure(Ugzp {gix(Dpndgl). Denote by My the
component closure(Ugep {ghx(Dpndgl).

Claim 6.4.9. I has exactly two irreducible components: {p}xDp
and Mp = closure(Ugzp {ghx(Dpndgl).

Proof: Iy is pure dimensional and if we project [pC Cx Dp onto G,
every irreducible component of Iy either dominates € or maps to a
single point. The inverse image of any point o = p is {g}x(DpnDg),
while the inverse image of p is {p}xDp. The set {p}xDp is irreducikle
by Lermnma 6.2.2 and thus is the only non dominating component of
Ip. To show there is only one dominating component it suffices to
find one point g 2 p such that the fiber over g is reduced and
irreducible. The sets (Dpﬂ Dq} for every p 2 g, are reduced and
irreducible by [BD p 615, lines 13-16] at least for C non hyperelliptic,

non trigonal, and non bielliptic (their hypotheses also exclude g =
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1(p) but their argument for irreducibility of "Spg” does not require
this; moreover we only need the result for one point g # p). This
covers all our cases of double covers C/C with g(C) : 4 and such that
= is smooth in codimension 3, except when C is non hyperelliptic of
genus 4, hence trigonal. In this case we will check the hypotheses of
Beauwille's criterion in [Be] for Dpﬁ Dq to he reduced, normal, and
irreducikle hold for some gq = p. Let m:G—C be the double cover and
denote wip) = p and wig) = §. We need to show for some g that
lwe-B-5l 2P1 has no base points and gives a morphism with at
most one ramification point in each fiker, at most of ramification
index ¢ 3. The embedded canonical model of C in P3 projects with
center p to a spanning plane curve of degree 5, hence a reduced
plane guintic & with ¢ 2 singular points (since § = pg - g = 6-4 = 2)
and no point of multiplicity 2 3 (since C is non hyperelliptic). Choose
any smooth point § on & not on any bitangent nor on any hyperflex
(tangent line with intersection number ¢ 4) nor on any line through
two singular points, nor on any tangent line through a singular
point. Then the pencil of lines through g defines the base point free
systermn [wC-p-gl and the corresponding morphism, which is

projection from g, satisfies Beauwille's hypotheses. QED for Claim

6.4.9.

Claim 6.4.10. Both components of Ip meet (1)~ 1( U,

Proof: Dy meets g~ 1{U) since Dp maps onto Z, and Ugzp (Dpndg)
is dense in Dy hence Ugzp (Dpndyg) also meets - 1{U)). QED for
Claim 6.4.10.
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By Claim bB.4.10, both components of Iy give components of Sp.
Hence the components of Iy are exactly those of S, and have the

same multiplicities, hence are also reduced.

QED for Lemma 6.4.7.

Remark 6.4.11. The previous argument shows that if

1xep:Cx Dp—> €xZ is the birational morphism induced by the
restricted Abel map (.Pp:o‘Dp_) =, and Iy the restriction to Cx .Dp of the
incidence divisor, then Sp = (1xg){Ip). The method of producing
Poincare divisors from incidence divisors 1s clearly explained in the
most natural case of line bundles of degree g on the Jacobian of a
curve of genus g in the notes of Kempf [Ke3, p.154], who attributes
the idea to Riemann. If Zccld) s any reduced irreducible
subvariety on which the Abel map o :Z— W CPicld) is birational onto
its image W, and such that W is normal and locally factorial (for
example if W = Picd(C)), and if 17 is the restriction to CxZ of the
incidence divisor [ € Cx C(d), then the birational map 1x« CxZ2—=CxW
carries [7 to an effective Cartier divisor 3 on Cx%W which gives a line
bundle whose restrictions to the fibers Cx{L} for L in W, define the
inclusion map WCPicld), The case Z = ¢{8) and W = Pic8(C), gives
the unigque Polncare line bundle which induces the map

C— Pic?(Picg(C)) taking q to Opicg(C){®q), where & = c1(0picg(C)(®)),
and E‘Jq iz the image of ® under the natural action of g in C on
Picg~1{C), taking L to LeG(g).

This is the unigque effective Poincare line bundle £ on CxPicg(C) such

that for g in C, c1(LZ[Hgl=xPic8(C)) = &, (in integral cohomology) [3V5].



26

The cases Zp = onC clg+1) parametrized by points p of C, and W =
Picg*1{C), give the only effective Poincare line bundles £ on
CxPicg*1(C) such that for q in C, c1(El{g}xPicg(C)) = &. These
Poincare bundles thus determine the curve C and hence give a
version of a Torelli theorem [Kel; KeZ, p253, cor 4 4 c; cf. 3V5,
Prop58]. The theorem in the present paper is an analog for Pryms

of this result.

6.5 The effective Poincare bundle Lp = O(Sp)

Fix any point p in €, recall ¥2dDp = {Din XC ¢(2g-2) . D : p}, and let
¥*(Dp) = 3p be the closure in CxZ of the preimage of Dp by the
morphism defined by ¥ on its domain of regularity. To see Sp is a
Cartier divisor in €xZ, note that by hypothesis singZ has
codimension 2 4 in Z, so the singular locus of €xZ has codimension 2
4 in CxZ. Since a local complete intersection which is locally
factorial in codimension ¢ 3 is locally factorial by Grothendieck's
proof of the "Samuel conjecture", CxZ is locally factorial [cf. BD], so
any Weil divisor on CxZ is Cartier. Thus Lp = 08x=Z(8p) iz an
effective line bundle on CxZ. In fact L is a Poincare line bundle for
€ in the sense that the map L~ Jipléx{L} from Z to Pic(() is the
inclusion map =cPic{28-2)(§). To see this, first note that for L in U
the restriction Spléx{L} = Dx{L}, where D is the unique divisor of |L|
containing p. This shows the morphism L+ I,pléx{L} = G(Spléx{L})
= FG(D) = L is the inclusion map ECPiC':Zg'Z:'(G), for L in U, hence
for all L in Z by continuity. To see which Poincare bundle it is, let's

look at the corresponding map €— Pic(Z) induced by Lp. Let g be
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general in C and consider the restriction of Sp to {gixZ. By the
description above, this is precisely @(DpnDglCZ. The following
result that g(DpnDg) = Z-Za(g,p" is due to Beauville and Debarre
[BD].

Lemma 6.5.1. If C is non hyperelliptic of genus g 2 4, and C/C is a
double cover with = either smooth or smooth in codimension 3, then
for any p on €, and any q 2 p, p', if Lp(Dpﬁ Dq) has its reduced
scheme structure, then p{DpndDg) = Z-Za(g p) as cycles and
schemes, where p' = 1(p). Moreover if g : 5, or if g = 4 and q is
general, then g{DpnDg) is irreducible. [Note g{Dpndgl is an
improper intersection when g = p, and E-Ea(qu') 1s improper when q
= p']

Proof: By [BD, proof of Prop. 1, p615], p(Dpndg) = Z-Za(g,p" as
sets, in particular the set tp(Dpﬁ Dq) 1z pure dimensional. Then hy
[Be, Rmugy. 1, p.360], [p{Dpndgl] = gp«lDpndgl, and by [Be, Thm. 1,
p.364], :[DpnDgl = Z-Za(g p" as cycles. Since I is locally factorial
Z-Zalqp" and (Dpn Dyl are Cartier divisors which are equal as
Weil divisors, hence since = is normal they are equal as schemes [cf.
Fu, Ex2.1.1,p.30, Ha, Prop6.11, p.141]. If g 2 5 then by [BD, p615] for
all pand all g = p,p, p{DpnDg) is reduced and irreducible in 2. If g

= 4 this holds for all p and general q by the argument in Claim 649
above. QED.

Thus the induced map C—Pic(Z) takes g to O=Z(Zaig,ph). in

particular the chern class of this line bundle is £ = c1(0=(Z)) in
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HZ(Z,Z), and the map is a version of the Abel Prym map ap:é—l' Pn
via the isomorphism Pg = PicE(Z). We will write ap':6—> PicE(Z) also
for this map, as well as other canonically equivalent incarnations

such as the map ap"C— PicH(Z) taking g to O=(Zalq,ph-2I).

7. Proof that NR(X) & NR(Ep) for Ep = m«(Lp), (M:CxZ-=23)
Next we will push the Poincare line bundle Ly = O8xZ(3p) (defined
in section 65) down to = and relate it to X. As usual we assume CG/C
iz a double cover not on Mumford's list, ie. C non hyperelliptic and =

either srmooth or at least srmooth in codimension 3.

The rank 2 "Prym sheaf' Ep on =
Definition 7.1. Let £p = px(Lpl), where m:CxZ—=7Z is projection.
Since the line bundles L in Z are generically pencils, £p is by Grauert

generically a rank Z vector bundle on = (eg. it is a rank 2 vector

bundle over Zzm).

Proposition 7.2. Assume as always that m:C—=C is a double cover
with C non hyperelliptic of genus g 2 3, and sing= either smooth or
smooth in codimension 3, and X, Ep are defined as above.

Then:

(i) P(EplZsm) & XIZsm.

(ii) Cl(EpEsm:‘ = §|Esm= Cl(essm(zn in HZ(Esmaz:‘-

(iii) £p is "reflexive” (and coherent).

Proof of (i): This follows from Grauert's theorem [Ha, Cor.12 9,

p288-9], since over points L of Zsm, the fiber of €p is HO(E L) and
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the fiber of X is [L| = PHI(C,L). QED.

Proof of (ii): Begin by removing the singular locus of Z, and its inverse
image in X and keep this convention throughout the argument, so that
£p is a rank 2 vector bundle and c1(Ep) is defined. We will use the
notation c1 rat{€p) to represent the chern class in Al(Zsm) of the vector
bundle EplZsm. Then the topological chern class c1(€p) = cf toplEp), is
the image in HZ(Z s, Z) of the rational equivalence class ¢ rat{Ep) under
the natural map clAl(Zam ) = HE(Zsm, Z) [Fu, ch. 19]. We will show
cl,ratlEp) = [E.Zalp,phl in AL(Zom), from which it will follow that

cll[Z-Zaip,phl) = £ in HZ(Z s, Z), as claimed. It suffices to

c1,toplEpl
check the stated inequality after restriction to Dp. Indeed if ZpCZ is the
image of the exceptional set of the restriction mp:Dp—)E of the Abel map
pX—=Z to ;Dp, we may restrict also to the complement of Zp in Zsm. le.
consider the maps: AL(Zom) —>Al(Esm—Zp)*All:Dp—tpp'lisingEUZp}). The
first map i1s injective since it i1s restriction to the complement of the set
an —sm which has codimension two in Zg. The second map is induced
by the isomorphism Lpp:(;Dp—cpp'll:singEUZp)}%(Esm—Zp) hence is also an
isormorphism. Since the composition A1(Zsm) %Aliﬂp—tpp'iisingzuzp}} is
thus injective, it suffices to check the equality ci ratlEp) = [Z.Za(p,p"]
after pullback to All:Dp—tpp'il:singEUZp}}. I.e. it suffices to show that
[Z.Za(p,p" pulls back to c1 ratlpp*(Epl), via gp* restricted to (Zsm-Zp).
We will do this in two stages. If we denote (on—Lpp'l(singEUZp)) by jjp,
we show first that, on bp, cl,ratlpp*(Epl) equals clJrat(fﬂ,(bp."’X}}, the
chern class of the normal bundle of jjp in X, and then we show that,
again on Dp, o rat{T{Dp/X) = [Z.Za(p,p)]

To compute the bundle gp*(Ep)) on :Dp, we represent it as an
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extension of line bundles via the fundamental exact sequence

(#) 0=0Ep(-1Dp—op* (Ep) Dp— Qpl Dp—0,
where OEpl-1) is the tautological line bundle on the projective
bundle F{Ep[Zsm) = X-p~1{singZ), and where Gp is the quotient line
hundle to be determined. This lets us compute i:j_(cpp*(E}I:ﬁp} as the
sum :1(®Ep(-1)|33p) + c1(Qp|jjp). We claim that Gﬁpi-lﬂjjp is
trivial and that QplDp = N(Dp/X). To trivialize GEp(-1)IDp we find
a natural non zero map from Bjjp into tpp*(tplljjp with values in
the sub linebundle ﬁtp(—illjjp. Recall that Ep = px(0(3p)) where if
Ipc Cx Dp iz the incidence divisor consisting of pairs (g,D) such that g
belongs to D in Dp, then Sy is the image of Iy under the natural
map 6><;Dp—> CxZ induced by ppDp—Z. Since this map is an
isomorphism from Cx SDI;. to 6X(Esm—2p], we may identify Sp with Iy
on these open sets. Thus to give a section of cpp*(tp’,'lljjp =
cpp*(u*fﬁ(lp]l)’,'lljjp, we pull back by @p* a section sp of u=(0(Ig)), ie.
a section sp of O(ly). We take of course a tautological section sp,
defining the incidence divisor Ip in Cx bp. Then at a point L in
Zsm~Zp, the value of the section sp in the fiber of ps(O{Ip)) at L is
obtained by restricting sp to the fiber Cx{L}. The fiber of the vector
bundle u*(l‘flfﬂp)) at L is by Grauert the space HO(& L) and, if D is the
unigque divisor in SDp lying over L, then by construction the value
determined by sp in the fiber HO{ € L) is an equation for the divisor
cut by Iy on Cx{D}, ie. it is an equation for D. Hence the walue of
the section gp*(spl) in the fiber at D of cpp*(?épllljjp does lie in the line
determined by D in HJ{& L), ie. the value is in the tautological sub
linebundle ﬁtp(—ijljﬁp of Lpp*(’ép)ljjp. This section sp thus defines a
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map Bjqu ﬁtp(—llllbp which we claim trivializes this bundle. le.
since the section sy defines the proper divisor D, it gives a non =zero
elermment of the fiber HD(G,L}, hence the associated section of
GEp(—l’lejjp iz nowhere =zero on :UDp.

Now we know i:]_(ﬁ?gp(—l)lzﬁp} = 0, so the fundamental exact
sequence (#) above implies c:1(npp*(?§p)|jjp) = c1(Qpli‘|p). But Qp|jjp
= OO Dp.Qpl Dp) = HOMUOER- 1) Dp.QplDp) = TelDp, the last
equality by the standard representation of the tangent space to a
Grassmanilan at a glven subspace, as the homomorphisms from the
subspace into the gquotient space, applied here to compute the
tangent space to the projective space fiber of ¢ at a point of SDp.
Next ohserve that ‘Tq]I:Dp = :ll(SDp.f’X) = the normal bundle of SDp in
%, since on :Dp the normal space to the section equals the tangent
space to the fiber. We will cormpute the chern class of this normal
bundle in rational equivalence (which is just the linear equivalence
class of the divisor of a section of the bundle), and show it

corresponds to [Z.Zap'{pl]l, via the isomorphism cpp:jjp — (Zsm~Zpl.

Lemma 7.3. The isomorphism tpp:jjp — (Zsm~-Zp) identifies
c1,rat(f|'|,(3Dpf’X)} with the restriction of [Z.Zap'(p)] to (Zsm-Zp).
Proof: If Nm:X—|w(l| iz the restriction to X of the norm map on
divisors Nm:&{2g-2) - cl(2g-2), p,q are points of ¢ with images B,3 on
C, then the hyperplanes in [wl dual to the points B, on the
canonical model of C pull back under Nm respectively to the divisors
Dp+Dp' and Dq+Dq'. In particular Dp+Dp' and Dq+Dq' are

~

linearly equivalent on X, and hence also on Dp. Thus we have
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N Dp/X) = ODHp(Dp) = OHp(Dp+Dp' - Dp') = ODHp(Dgr D' - D).

(14

Now if g 2 p,p, and alqg,p) denotes (1-1){g-p) = (g-p) - (g-p), then
using the formula in [BD, p615], Opo(qu) = ﬁpo(quﬂ :bp) = (in
their notation ﬁbp(qu)), corresponds under the isomorphism

(pp:jjp = (Zsm—Zp), to OZ(Zalg,p"), while Gbp(bq' ) corresponds to
OzZ(Zalqg',p". Moreover by the formula proved in [3V1], Obp(:ﬁp')
corresponds under this same isomorphism to (the restriction of)
=(Z). Thus we have ﬂ(i'lp.fX) & ﬁbp(b(fjjq' - :bp') = (the
restriction of) OZ(Zaig,p" + Salg'p) - ) = (using the theorem of the
square) OZ(Za{g,p") + alg.,p) = OZ(Zalp,p"). since from the definition
above alq,p’) + alg.,p’) = alp,p’).

Surmming up, via the isomorphism (pp:jjp — (Zsm~Zp), we have
NUDp/K) = 0DplDp) = O(Zsrm-zp)Zalp,p’)). Since the rational
chern class of a line bundle 1s simnply the i1somorphism class of the
bundle, this proves what we want. QED Lemma 7.3.

Hence on i)p = (Zsm~Zp), we have cf ratl€p) = c1 ratlQp) =
[Z.Zap'(p)]. Then, by injectivity of AL(Zam) —>A1(Esm—2p), we have
cl,ratlEp) = [2.2ap'(pl] also on Zsm. This class is in fact not
rationally equivalent to the Gauss class £, but it is cohomologous to
it, so o1 toplEp) = cliZ.Zap'(pll) = % on Zsm, and we are done.

QED for (ii).

Proof of (iii): Ep is reflexive. Assume that C is nonhyperelliptic of
genus g 2 3 and let £ be any Poincare line bundle on €xZ (ie. a line
bundle £ on CxZ such that E|@x{L} = L for each L € Z), and let E
denote the direct image p=(L£) on =, where p: CxZ — Z is the

projection to the znd factor. Recall that for € to be reflexive means
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that the natural map € — £#** is an isomorphism. Let
v: £ = E** denote the natural map of 0=-modules; we want to
verify that v 1s an 1somorphism. First, v is clearly an isomorphism
over the open set Zgm C Z since there £ is (the locally free O-
module corresponding to) a rank 2 vector bundle and vector bundles
are reflexive.

To conclude the rest we will use the depth properties of £ and

£** For any open set ¥V C Z, let Z denote the closed set Sing(Z) C =

and consider the commutative diagram

Vv
Mv,g) —» T(VE**)

[ [

Mv-(Znv),E) = I'(V-(ZnV),E**).

We already know that the bottom horizontal map (v on sections
over V-{ZNV)) is an isomorphism since V-(ZNV) C Zgm, so it suffices
to show that the 2 vertical maps are isomorphisms. For the one on
the left, note that since € = p:(L), the restriction map

[V,E) = I'(V-(ZnV),E) on Z is simply the restriction map

M~ (v, &) = T~ Lv-(ZnV)),£) on Cx=Z. Now CxZ is normal, £ is
a line bundle on CxZ, and pu~1(2) = &xZ ¢ €xZ is closed of
codimension : 2 (and of course u~ H{(V-(ZNV)) =

p- -2y nw~1(v)), so this restriction is an isormmorphism (by
"Hartog's theorem”). For the one on the right, we apply

"Bchlessinger's lemma” [3c] as follows. If Z is empty there is nothing
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to do, so we may assume that Z 2 @ and then in particular (since C
is not hyperelliptic) we have that = is normal of dimension 2 2 and
codim=(Z) » Z. Therefore, since £€*¥* = (E*)¥*, depthz(€%*) » Z and
hence ['(V,£%%*) — ["(V-{ZNnV),E* *) iz an isomorphism [3V3, Lemma
22 (with 4 = €%), p. 392, and Prop. 18 {{i)& (iv), with n = 2), p. 391].
QED. for (iii), hence for Prop. 7.2.

Remark 7 .4. Note, with regard to (i) in Proposition 7 .2, that with
Ep = Mx(Lp) on Z we don't know a priori what vector space EplL is

for an arbitrary point L € Z, ie. at points where the hypotheses of

Grauert's theorem do not hold. We would like to indicate a global
description of X as the Pl-fibration associated to a possibly different
rank two OZ-module, which iz valid also at those points. First, ¥ C
G(2g-2) is the Abel preimage of = € PicZ2872({), so if g: X — = is the
restriction of the Abel map to ¥, then for each L € =, o~ 1(L) = |L| =
P{HO(E,L)). Our convention is that, for a vector space V, P(V)
denotes the space of lines in V through 0. Note that P(V) is then
naturally Proj(3(V#)), where 3(V#*) = CeV*a32(V*)a . is the
symmetric algebra on V* and is the graded algebra of regular
functions on the vector space V. Thus we sesk an O=-module F
such that for each L € Z, the fibre FIL is (naturally) isormorphic to
the vector space HI(E,L)*. Then 3(F), the symmetric algebra
GeTFe32(Fle.. on F, will have the property that Proj(3{F)) over =
has the same fibres as ¢, ie. Proj(3(F)IL = Proj(3(FIL) =
Proji3(HO(E L)*)) = P(HO(G LY = ¢~1{L). Thus, we expect that for

such an F, Proj(3(F)) is isomorphic to X {over Z).
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Note that since HO{& L)* = HL({ EeL*) by Serre duality, in fact
we want an 97-module F such that FlL 2 HL($ EeL*), and this is
easy to do. Namely, if £ is any Poincare line bundle on CxZ, and if
f0xZ—=C and u:CxZ—7Z are the two projections, then take £'=
f*(K)eL* on Cx= and consider T = R1u4(L". Then, since ohviously
HZ{L'|@x{L}) = 0 for each L € Z, by the "base change property” F is a
coherent §=-module such that Flp, = H1(£'IGX{L}} = HL(C EeL*).

Then for this ¥ on Z, one can show that Proj(3({¥F)) = X (over Z).

8. Proof that NR(Ep) = apl €) (= Abel Prym model of C)
Definition 8.1. The Abel Prym map ap:e—> PO associated to a point
p on C is defined by aplg) = alg,p) = (1-1){g-p) = (g-p)-(g-p), where

1 1s the involution on C.

e show next that if Ep is the rank two sheaf defined in section 7,
that NR(Ep) = {7 in Picl(Z): hU(Ee 1) = 0} can be naturally identified
with the Abel Prym model apié) of € in Pg. It will then follow from
Lemma 54 that NR(X) = ap(ff:l, up to translation in Picl(Z), and
thus that X determines €. We will show below also how to recover

the involution from apié) and hence the double cover C/C from X.

Proposition 8.2. NR(Ep) = apié) via the isomorphism Pg— Pic0(Z)
taking a to O=(Zg-2).
Proof: The proof occupies most of the remainder of the paper. First

we show we may reason about Ly instead of Ep.
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Lemma 8.3. NR(Ep) = {7 in Picl{Z) . hO(&x=, Lpeu*(t)) = 0}
Proof: 1 e HO((x =, p*(tlely) = HO(Z, pelp*(tlelp)) =

HO(=, T M Lpl) = HO(=, T®Epl, (by definition of ps, the projection
formula, and the definition of £g). QED.

The usefulness of Lemma 8.3 is that Lpep*(t) is a line bundle,
hence is easier to compute with than the sheaf £y Now we want to
know which twists Lpe u*(t) by pull backs of degree zero line
bundles T from Z, are effective. Ly = O(Sp) itself is effective since it
is defined by the effective divisor Sp. Via the isomorphisms Pg =
Picl(P) = Pic0(=) taking c to Op(Zc-2) to O=(Z:-Z), all degree zero

line bundles on = have form T- = =(Zz-2) for c in Pq.

Definition 8.4. For any point c in P, define Lz = I,p® Mm¥ite) =
Lpeop*(0Z(Zc-2)) =2 O0xZ(3pleu*(0Z(Z:-2)). In particular, Lp =
Lo = ﬁéxE(SpJ.

We will show Lg is effective if and only if ¢ belongs to ap(é).

Since Lp is a Poincare line bundle on CxZ, so are all the L. We will
study the sections of the various line bundles L by representing
thermn by not necessarily effective divisors and analy=zing whether
these divisors 'move’ by restricting them to the fibers of form
igqixZ. By section 6.5, restricting Lp to the fibers {gixZ determines
the Abel Prym map ap':6—> PicE(Z) taking g to Lpligi=z =
OZ(Zalq,p")) for all . In particular we are trying to determine all
effective Poincare line bundles £ on Cx= whose 1st chern class c1

has Z component equal to £.
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Lemma 8.5. apl:ﬁ) C NR{Ep).

Proof: We must show for all g in €, that twisting Lp by p*itaigp)
(= the line bundle corresponding to ap(ql), is effective. Indeed we
will show that Lpep*itg(gp)) = Lg. This will do it since Lg is
effective. We will use the theorem of the square. Zince by
Lefschetz, the restriction map is an isomorphism PicO(P)— Pic0(Z),

the theorem of the square for Picl{P) is also true in Picl(Z).

i

Proof: We know if r is general, in particular different from p, p', q.
q, then SplirixZ = @p{Dpndyr) = Z.2a(r,p", and SglirixZ = p{Dgn Dy
= E-Ea(r,q'), whence (Sq—Sp}ll{r}xE = E-(Ea(r,q')‘za(r,p'))- Hence
LgeLp* = p*(0(Zair,g)Zalr,ph). Since Lgelp* = p*itg) for
some unique tc in Picd{Z), we must have O=Z(Zalr,g)Zalr,p)) = Tc
= O0zZ(Zg-Z) for some unigque c in Pp. Hence Zg(r,gq")-Zalr,p)) = Zc-Z
on P by Lefschetz, so by the theorem of the sgquare we must have c
= alr,gq) - alr,p" = (r-g-r'+q) - (r-p-r'+p) = g-g+p-p = aple). QED

for Claim 8.6 and Lemma 8.5.

Next we will show conversely, that NR{Eg)Cap( &,

By definition, £¢ = Lpep*ite) = OCxZ(Sp)@ u*itcl,

We want to use section 6.5 write these bundles entirely in terms of
=, and use the theorem of the square to simplify them. Since tc =
OzZ(Zc-Z) is already defined in terms of =, consider O&xZ(Sp).

Define Zp = the divisor on Cx = defined by the pullback of the divisor
CxZ on CxP via the map CxZ— CxP taking {(gq,L) to {g,L-alg,p").
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Then as a set Zp = Ug igixZa(g,p). By section 6.4 we know Sp =

Ug i xplDpndg). Since by section 65 @(Dpndgl = Z-Eg(g,p" for
most g, Sp and Zp are very similar, but they are not the same. le.
when gq = p, g{DpnDpl = =, while Z-Zg{p,p" is a proper divisor on Z.
On the other hand, when q = p/, Lp(Dpﬁ Dp'} = I'p iz & Gauss divisor
on I [see V1], while alp',p’ = 0 so ZNZa(p'ph = 2. Since alg,p) = 0
if and only if q = p', by comparison with Sp which we know has only
two components, both reduced, it follows that Zp has exactly two
irreducible components, {p'}xZ and My = closure(Ugzp {ghx(DpnDg))
= closure{Ugezp' gt x(Z-Zaiq,p"). Thus Sp and Zy each have two
components, only one of which 1s shared. More precisely,

Sp = {ptxE U Mp, while as a set, Zp = {p}xZ U Mp.

Claim 8.7. The divisor Zp on Cx=, is reduced, so Zp = ({p't=xZ) + Mp.
Proof: We know the component My occurs simply in Zp because
when we project Zyp onto ¢ most fibers are scheme theoretically the
same as those of the projection of Sp, namely the fiber over a
general q is p{Dpndg) = Z-Za(g,p". equal as reduced schemes.
(Since this shows Sp and Zp have the same unique dominating
component, it follows that in fact for all g =z p, p', that @ (Dp-Dg) =
Z-Zaigp") is an equality of cycles) It remains to show the
component {p}xZ is reduced in Zp, which we do by calculating the
order of vanishing of the function defining Zy. If £ is a Prym theta
function defining = on the universal cover of P, then by definition Zp

is defined locally by the function z(q,t) where q is a variable on C

and t is a variable on Z. We may compute the multiplicity of the
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component {p'txZ at any general point, ie. at (p' L) for L general on
Z. This means we want to show the differential of g{t-ap'{q)) does
not vanish identically at (g,t) = (p',L). But the partial differential in
the € variable 3z/3q is by the chain rule the differential of =
evaluated on the tangent space of € at p'. So it suffices to show that
for general L, the kernel of dz does not contain Tp'é, considered in
the tangent space of Pg at the origin, since ap':é—i' Pp 1s an
embedding and P 2 Pg by a translation inducing isomorphism of
tangent spaces. Since for g = p', we have ap'(g) = 0, hence L-ap'qg) =
L, the kernel of dz is the tangent space to Z at L. Since = is
irreducible, hence the Gauss map on Z is dominant, there is some L

in Zsm such that TLZ does not contain Tp'é. QED for Claim 8.7.

If we denote the projections by £:.0xZ—= € and u:€xZ—7Z, thus we
have L = £p® ME(T) = 06x3(5p3® ME(T) =

GExz(Zp + ¥ (p-pNep*ltc) = OFEZ(Zp + f*(p-p) + p*(Zc - 20 =
GExz(Ug Uaghx{Zalqp" * Sc - ZH + f*(p-p7). Now in analyzing how
far this is from heing effective, we would like to make the first part
look as effective as possible. Using the theorem of the sgquare, we
have Zaigp) * Zc - 2 = Zalgp)+c, so we replace

Ug faix{ Sa(gq,p) + Zc - i+ f*(p-p) by

Ug e xd Zalg,ph+c * £*(p-p’). Unfortunately this is not the same
line bundle on Cx =, in fact it is not even a Poincare line bundle for
CxZ. We have made the restrictions to the factors {gixZ linearly

equivalent to what they were, but we have changed the restrictions

to the factors Cx{L}. We must thus correct by a pullback from c,
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namely by Ug lgix{Za(g,p + Zc - 2 - Zalgp+ct | Cx{L} for general
L in Z. But a general L does not belong to either Z; or =, so we must
compute Ug igixiZalg,p) - Zalg,p'i+ct N Cx{L} =

e, L) - L belongs to Za(g,p" } - {{q,L) : L belongs to Zg{qgq,p+c }, and if
we suppress the fixed L, this divisor on Cx{L} is isomorphic to the
following divisor on C,

= {q: —alq,p) belongs to Z-L } - {q : -alg,p’) belongs to Ze-L )

= {g: alg,p") belongs to (-1)*(Z-1)} - {g : alg,p") belongs to (-1)*(Zo-1)}
= ap* {(-1*(Z-L) - (-1)*(Zc-L0

= ap'* {(Zg-L) - (Z-L) = ap'® {{Zc-L) - (2-L))

This is the divisor of degree zero on € whose pullback to CxZ must

be added to GExZ(Ug {gix{ Za(g,pi+c * £*(p-p)) to make it equal the
Poincare line bundle £L-. We want to simplify this correction term a
bit more. We claim in fact it is merely c, considered as a line bundle

on C wvia the inclusion PpcPicd(&). First we need a standard

1somorphism.

Lemma 8.8. If L is any point of PCPic4872({) the map sending
(Ze-L) - (Z-1) to (Zg) - (2) is an isomorphism Picd(Z) = Picl{Pq), and
(by the theorem of the square), every L induces the same
1somorphism.

We assume Lemma 8.8 without proof.

Consequently we may as well write (Z¢ - Z) = 1 for the element

(Ze-L) - (Z-1) of Pict{Pp). By Lemma 88 we can thus write the
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correction term above as ap'*{(Zc-L) - (2-L)F = ap'™* (1), We will
show below that the Abel Prym map ap':é—> Pp, induces by pullback
of line bundles an isomorphism Picli{Pn) — PpcPicd(& which is
inverse to the Prym polarization isomorphism

Pn — Picd(Pp). This will prove the correction term is just ap'*(1c) =
c, a point of Pg which we will think of as either a divisor or a line
bundle of degree zero on C.

Assume ap'*(1c) = c, to be proved in Corollary 8.14 below.

Thus we have £g = O8x=Z( Ug {ghx{ Salgq,ph * Zc - I} + ¥ (p-p7)

= O@xZ( Ug {ghxl Sa(gph+c ) ® £*(c) @ £*(0(p-p"). Now denote
Ug iagi=1 Salg,p'i+c | (restricted to CxZ) = Ze, an effective divisor on
CxZ. To see whether Lo = O3x=(Zo)ef*(clef*(Fip-p) is effective, it
is useful now to push it down to € by the first projection f:CxZ— €.
Note that Z0 = Zp has the "vertical” component {p'txZ. Howewer
when c does not lie on the Abel Prym curve ap(e) = -ap'( ¢), then
a(g,p')+c is never zero for any g on C, hence then Zc has no
"vertical” component of form {gixZ. (Recall from section 2.1 that Pp
1z the copy of the Prym wariety in Picl{&) that contains 0, while P1
is the copy that does not) Pushing £c down by £.CxZ—= €, we have
fe(Lp) = f2(00x=(Z))ece UG (p-p'), where c belongs to Pg and

& 3(p-p" belongs to P1, hence the tensor product ce U &(p-p') belongs

to P1. Therefore it remains to determine f:(Z:).

Lemma 8.9. Suppose Y is normal and irreducible, £ Y—B iz a proper
morphism onto a smooth curve B, and £ a line bundle on Y such

that h9(Z|f"1{p)) = 1 for p in & non empty open set U of B. If £ =
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(D) where D 2 0, and if for each point gj on B the fiber f~1(gj)
appears in D with multiplicity mj, then f«(L) = OR(Zm;j qi).

Proof: By hypothesis, D = E + £ mj f 1{gi), where E is an effective
divisor on Y that does not contain any fikers of f. Thus by the
projection formula, f£(O(D)) = fx(O(E)e{*(OR(Zm;j qj)) =

f:O(E)e Op({Zmj gi). Thus it suffices to show that f:O(E) = Op. First
of all £ J(E) is a line bundle on B, because it is a torsion free
coherent sheaf on a smooth curve, and hence a vector bundle, and
by Grauert's theorem the rank is hD{Z|f"1{p)) = 1 on the open subset
U of B, hence the rank is one everywhere. The effective divisor E
defines a section o of G(E) hence a section s of f+({G(E)).

Claim: s is a nowhere vanishing section of f:(O(E)).

Proof of Claim: If s did vanish at p in Z, then in some open
neighborhood V of p we could write s = ts for some local parameter t
at p and s a local section of f+(G(E)). Then since ['(V,f:{G(E))) =
Tif~1{v), 3(E)) is by definition an v module map, if 5 corresponds
to o, the equation s = ts in [(V,f:{F{E))) vields the equation o =
f*(t)a in ['(f-1(V), §(E)), which would imply that ¢ vanishes along
the fiber f~1(p), a contradiction.

QED for the Claim and Lemma 8.9.

Lemma 8.10.

(i) If c in P does not lie on ap(é), then f{(T(Z:)) = 078, and f«(L-) =
ce T(p-p') belongs to P1.

(ii) If c does lie on ap(e)CPU, namely if ¢ = aplqg), then f+(G(Zc)) =

G &g"), and then f:(Lc) = FFq) in Picl({).
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Proof: We only need to verify the hypotheses of the previous
lemma, ie. to compute orders of vanishing for our divisors on CxZ.
Proof of (i): Since Zc = Ug { Zaiq,pY+c b, if algpi+c 2 0 for all g, ie.
if -c does not lie on ap' ), equivalently if c does not lie on apl &,
then the intersection of the divisor Zg with every fiber £~ 1{qg) =
lgixZ of f is & proper divisor Zg{g,p+c in the fiber {gixZ. Thus the
section defining Z; does not wvanish identically along any fiber, hence
defines a section of fx(0(Z:)) which does not vanish at any point of
€, so that then f{F({Zc)) = O3 Then f«(Lc) = coFip-p" belongs to
P1CPict(), the component of Nm~1(0) that does not contain @,
hence no line bundle in P{ has sections. This proves that h0{f{X.))
= 0 for c not in ap(éj, hence that NR(Ep]Cap(éj.

Since we already know that ap(@}lCNR(Ep), this will complete the
proof of Prop. 8.2, modulo Corollary 8.14 helow. We can look also at

the other case profitably from the present point of view howewver.

Proof of (ii): If c = aplqg) does lie in ap(a'l, then -c = ap'g’), and the
divisor Z¢ contains only the fiber f-1{g", which occurs with
multiplicity one. This is true by the same dz/dq calculation used
above to prove Zp is reduced along the component {p=Z.

Then f«(G(Zc)) = O¢(gY), and since aplg) = g-p-g+p’, hence
q+taplg)+p-p =g+g-p-g+p+p-p =q wehave fx(L) =
Glgleapligedip-p) = G&(y), the line bundle in Picl{&) with one
section wvanishing simply at q.

QED for Lemma 8.10.
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Corollary 8.11. For all p, the effective Poincare bundle Ly on CxZ
has exactly one section.

Proof: By definition, ¢ = Lpeu*(1c). Hence Lp = Lp = L where
c = 0 = aplp) does lie on apl.fﬁ). Hence by Lemma B8.10 (ii) fx(Lp) =

G &(p) has one section, as does L. QED.

Remark 8.12. These examples show how a discontinuity can occur
when we push down a mowving divisor which specializes to contain a
fiber. For instance here fz of the general O(Z2) is a trivial line

bundle while fx of the special G(Z:) is a line bundle of degree one.

Abel Prym pullback is inverse to Prym polarization.

Finally we want to complete the proof of the formula (ap*({tc) = c,
which was assumed just above Lermmma 89 above. To finish, we
need to know that pulling back line bundles via the Abel Prym map
(ap"* PicU(Pg)— Picl{ (), is precisely the composition of the inverse of
the Prym polarization isomorphism Po— PicliPp), composed with
the inclusion PopcPicl{E). Let there be ziven an etale connected
double cover of smooth curves C— C, with associated Jacoblian and
Prym wvarieties P0CJ, and principal polarizations a.J— Picl(J) = J,
a:d = Picdi{&)—=Picl( ), uwPp—=PicY(Pp) = Bn. Denote by ] the map
dual to the inclusion jPo— J, and by h:J—Pg the map such that jch
= 1-1 {ie. h = 1-1 but with image Pg instead of J), and that for any
homomorphism f, f' denotes the dual homomorphism transferred

back to the original ppav's, ie. f' = 1:|n:llstz'iza5;ttion'1 o f o polarization.

Lemma 8.13. The maps j and h form a 'dual pair', ie. j' = h, h' = j;
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equivalently, the following diagram commutes:

o~

J
picliJy - Pp
] [ w
J = Pn
h

Proof: Since «:JxPg—J is an epimorphism, it suffices to show the
two compositions JxPg— P ziven by Jo 2 e « and p e h » o« are
equal. For this it suffices to check them equal on the two
summands J and P separately.

(0) Claim: on J, both compositions equal zero.

Since «:JxPg—J, is given on J by w*:J = Picl(C)—=Picl() = J, we
want tolock at p e he w® = pe 0 = 0, since m* maps into the
symmetric part of J, ie. into the kernel of h.

On the other hand, J¢ 2 e w* = J e Nm ¢ a, using Mumford's result
that Nm and 7% form a dual pair, = (Nm = j) "ea = 0 ¢ j = 0, since
Po = im(j) € kerilNm). QED for Claim.

(1) Claim: on P, both compositions equal 2.

Proof: On P, « is given by jPop—J. Then we have p e h o j =

M oe 2P0 = 2, since multiplication by 2 commutes with any
homomorphism. Also we used the fact that h = j, the restriction of
1-1 to P, is multiplication by Z. [Check it on the Abel Prym curve
consisting of points of form (1-1)(p-q) = p-q -p'+q’. le. applying 1-1
to this point gives (1-1){p-q -p'tq") = p-q -p'+q' -p*q +p -q =
Zp-2q-2p+2q' = 2(1-1)(p-q) as desired]. On the other hand, = 2 ¢ j
= by definition, the polarization induced by J on P, which = 2u, 1e.
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the polarization of J restricts to twice the polarization of Pg, as is

well known. QED.

Corollary 8.14. If u:f—=Pg is an Akel Prym map, and
uPicl{Pg)— J( ) its induced dual map ("Abel Prym pullback'), then
U e = j (the inclusion Poc J), hence u = Jje n-1l

Proof: If we define the Abel Prym map u = h ¢ t, where t is the ahel
map t: C— J, then on dual varieties we have 1 = t « h. Hence if

e Pop— 13[] 1s the polarization of P, we have u e Moo= toho M, and

since we know the result on Jacohians, we have £ =221 where

a:J—=Picl{J) is the polarization of J, this yvields G o p =
tehop=2a"1lehoep=(bydefinition) h' = j, by Lemma 8.173
above. QED.

Since in our earlier notation, we have t = &p' ,and hence u = h e t

= ap', we get (ap')* = u = jo u'i, where y 1s Prym polarization

and j is inclusion PgC J. This completes also the proof of Prop. 8.2.

Recovering G/C from NR(X).

Hawving recovered the curve C from X, next we show how to recover
also the involution v+:.€— €, equivalently the double cover m:C—=C. We
start from NR{X) € Picl(Z) which corresponds under the

isomorphism Picd{Z) 2Pg, to apié) C Pp, given up to translation.

Lemma 8.15. X determines not only the curve €, but also the
involution v:.C— 6, and hence the double cover m:&—=C.

Proof: If C has no glg so that the Prym canonical map C— P22 is
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an embedding, then the Gauss map on ap(é), which for non
hyperelliptic C factors as the double cover m:.C—C followed by the
Prym canonical map, recovers m. In general, we use an argument
of Welters [We2]. By definition, the projection p = {1-1)Picl{&)— Pp,
1z determined by the involution v on Picl{ ). Conwversely, the
involution 1+ on Pic9(&) is determined by the projection via » = {(1-p).
Thus if a:—Pg is (any translate of) the Abel Prym embedding of €
in Pq, since &:C—=Picl{&) iz the Albanese variety of & there is a
unigque map pPict(&) - Pg such that a = pex, ie. p is the projection
Picd{&)=Pp. Then p determines the involution v =
(1-p)Picl{ &) - Picl( &) which by the strong Torelli theorem [Ma,

p.792] determines also the involution +:€— ¢. QED.

This concludes the proof of the main result Theorem 3.1.

The prohlem remaining open i1s to strengthen the analogy with
Andreotti's theorem further and determine when C—C is
determined by just the hirational equivalence class of X.

Conjecturally [cf. L3, 3V5] this occurs when CLff(C) 2 3.
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