The Pfaffian structure defining a Prym theta divisor
Roy Smith and Robert Varley

Abstract: On the Prym variety of an étale double cover of curves, we construct locally
a skew-symmetric matrix of regular functions whose Pfaffian is an equation for the theta
divisor. This result accounts for several of the known features of the structure of a Prym
theta divisor and its parametrization by an Abel map. The Pfaffian of the matrix of
linear terms is the equation that Mumford introduced for the tangent cone to the Prym
theta divisor at a point - as long as that polynomial is not identically zero. We illustrate
the contribution of the higher order terms to the Pfaffian, and from Casalaina-Martin’s
multiplicity result we derive a Pfaffian equation for the tangent cone which holds whenever
Mumford’s equation is zero.

1. Introduction

Local Pfaffian equations for Prym theta divisors

It seems to be commonly assumed that in 1974 Mumford proved in [M2] that Kempf’s
determinantal equation for the tangent cone to a Jacobian theta divisor, induces a Pfaffian
equation for the tangent cone to the theta divisor Z of the Prym variety P, associated to
an étale double cover m : C — C of a curve of genus g. Some have assumed this as well
for the restriction to P, of Kempf’s matrix of locally regular functions whose determinant
defines not the tangent cone but the theta divisor itself of the Jacobian of C' [K2, p. 160].
Nonetheless, to the best of our knowledge neither of these statements has been asserted
in the literature up to now. In particular, Mumford did not address at all in [M2] the
question of a (local) Pfaffian equation for the Prym theta divisor = itself, and he makes
clear there that the corresponding statement about tangent cones is sometimes false. For
the literature on Pfaffian line bundles, we refer the reader to Plaza Martin’s paper [PM]
and the references there.

In the present paper we prove the existence of a local Pfaffian equation for the Prym
theta divisor = around every point, induced by restricting Kempf’s determinantal equation
for the Jacobian theta divisor of C. Then, using Casalaina - Martin’s recent computation
[CM] of the multiplicity of = at every point L, we derive corresponding Pfaffian equations
for the tangent cones to = at all points, in terms of a local expansion of our equation for
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For a given curve C, Kempf defined a classifying map from a neighborhood of a point
in Pic9~!(C) representing the line bundle Lg, to the space of n X n matrices where n =
hO(C, Lo). Then the scheme W,_; of effective line bundles in Pic9~1(C), is locally the
pullback of the locus of singular matrices under this map. I.e. a local equation for W,_;
is given by the pullback of the universal determinant equation on square matrices.

Now consider the Prym variety P of the double cover C — C, as a subvariety of
Picg"l(é’) and a point L on Z, where 22 = Wg_l - P. Ideally the restriction to P
of a local family of matrices, whose determinant equation defines Wg_l locally near L,
should give a local family of skew symmetric matrices whose Pfaffian equation defines =
locally near L. I.e. to get a local equation for = around L, we want to first restrict the -
entries of the matrix of regular functions whose determinant defines W§_1, and then prove
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this restricted matrix of regular functions is skew symmetric. This is indeed true, in an
appropriate natural formulation, and is proved in this paper. Then the Pfaffian of this
matrix provides a natural square root of the restricted equation, and hence a local equation
for =.

In terms of the local classifying map from line bundles to matrices, this says the classi-
fying map defined around L in Pic?~1(C), restricts on a neighborhood of L in the Prym
variety P, to have values in the sublocus of skew symmetric matrices. Thus the scheme
structure on Z is the pullback of the scheme of singular skew matrices defined by the
pullback of the universal Pfaffian equation.

Pfaffian equations for tangent cones to a Prym theta divisor

By the result above, an equation for the tangent cone to = at L, must be the non
zero homogeneous form of lowest order, in the Pfaffian of the skew symmetric matrix M
of restricted regular functions defining =. Ideally this too is the Pfaffian of a matrix of
suitable homogeneous forms from the entries of M. We recall however that it may differ
from the Pfaffian of the matrix of linear forms from the entries of M. This means the
derivative of the classifying map from the Prym variety to skew matrices can drop rank so
much that it does not always pull back the tangent cone of singular skew matrices to the
tangent cone of =.

Nonetheless, we show there is still a Pfaffian equation for the tangent cone. In particular,
both the Prym theta divisor =, and all of its tangent cones, have an induced Pfaffian
structure. I.e. the equation of the tangent cone to the Prym variety is the pullback of
the universal Pfaffian equation by a matrix of certain homogeneous forms in the matrix
defining Z. It turns out, instead of all linear forms, one takes some zero forms, some linear
forms, and some quadratic forms.

We can summarize the situation for the tangent cone to = at L as follows. Consider
a matrix of regular functions whose determinant represents not a tangent cone, but the
theta divisor itself of the Jacobian of C. Mumford’s skew symmetric matrix contains only
the restrictions of the linear terms from this matrix. If any of those linear terms come via
pullback from the “downstairs curve” C, their restrictions are simultaneously symmetric
and skew symmetric, hence zero. Thus if more than half of the linear terms come from
the downstairs curve, as pointed out in [S] and generalized in [S-V5], then Mumford’s
restricted matrix has zero determinant.

Let A be the matrix of regular functions, whose determinant defines the Jacobian theta
divisor Wg_l of the upstairs curve C. Let B be the matrix of restrictions of these functions
to the Prym variety, and let B; be the matrix of linear forms from the matrix B. If L
is a point of =, and M is a line bundle on C such that =*(M) < L, and with h°(C, M)
maximal, then one can choose the matrix A such that the matrix B of restrictions of the
xe
the block  is skew symmetric, and the block of zeroes is square of dimension h°(C, M).

Then the Pfaffian of the matrix B; defines the tangent cone to E at L if and only if
RO(C, M) < 2h%(C, L) [S-V5]. If h%(C,M) > 1h%(C, L) however, this Pfaffian is iden-
tically zero. In that case, let @@ be the square matrix of dimension h°(C, M) consisting
of the homogeneous quadratic terms of those regular functions in the restricted matrix

linear forms, looks like this: B, = ‘2} , where each block has linear forms as entries,
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B belonging to the entries in the upper left block. Then @ is skew symmetric, and by
Casalaina - Martin’s multiplicity result, the lowest degree form in the Pfaffian of the skew

‘2} is an equation for the tangent cone of = at L. This lowest

degree term is itself then the Pfaffian of the matrix [_?\t

symmetric matrix {_at

1(} , 50 in all cases the tangent
cone to the Prym theta divisor is defined by the Pfaffian of a skew symmetric n x n matrix
of forms where n. = h%(C, L).

We wish to point out that the Pfaffian structure presented here uses both the double
cover and a choice of auxiliary divisor. We do not know in general to what extent it
depends on this data, but for the intermediate Jacobian of a cubic threefold, we show the
Pfaffian structure does vary with the double cover. It would be interesting to investigate in
general the relation between the uniqueness of the Pfaffian structure and the Prym-Torelli
problem.

The entries in Mumford’s matrix By of linear terms at L, are explicitly computed in
[M2] following Kempf, from a basis of sections of H 0(C, L). It would be desirable to give a
geometric interpretation for the quadratic terms € in our matrix, when Mumford’s matrix
has vanishing Pfaffian.

We give such an interpretation for the example of the intermediate Jacobian of a cubic
threefold in terms of the conic bundle structure defining the Prym representation. The
resulting Pfaffian equation for the tangent cone to E (at the unique singular point): zoQo—
21Q1 + £2Q2 = 0, a homogeneous combination of linear and quadratic terms, is then an
equation for the cubic threefold itself and displays the threefold as the union of a net of
conics. Thus although the tangent cone to = determines only the cubic threefold, the
Pfaffian equation arising from a particular Prym representation determines also a choice -
of conic bundle structure for the threefold.

Acknowledgements: We thank the organizers for the invitation both to speak and to
present these results in writing, and we thank the editors and the referees for suggesting
the usefulness of explaining the published history of this somewhat complicated story.
We remember fondly our good friend Professor Sevin Recillas not only for his fundamental
work on Prym varieties, his long devotion, contributions and service to algebraic geometry,
but also for his kindness and legendary hospitality on numerous occasions.

We are grateful to Sorin Popescu for bringing the work [E-P-W1,2] to our attention.

2. History of the problem of Pfaffian equations for Prym tangent cones

Some cases where Mumford’s Pfaffian tangent equation vanishes identically
Recall from [K1, Thm. 2, p. 185] Kempf’s matrix of linear forms whose determinant
defines the tangent cone at L to the theta divisor of the Jacobian of C, where 7 : € — C
is an étale double cover. Mumford did show that if L is in =, the restriction to the Prym
tangent space at L, of that matrix of linear forms becomes skew symmetric, but that does
not imply the corresponding Pfaffian defines the tangent cone. More precisely, his results
there provide such a Pfaffian equation for the tangent cone to = at L only under the extra

assumption that multy () = %ho((:’,L), i.e. that the restricted Pfaffian does not vanish



4

identically. Mumford explicitly says this (M2, p. 343, lines -7,-8], but he only examined
this assumption when h%(C, L) = 2.

Indeed Mumford was concerned only with identifying singular points of Prym theta
divisors, i.e. points with mult;(Z) > 2. Since in all cases we have mult,(Z) > %ho(é’, L),
all points with h°(C,L) > 4 are singular. He was thus interested only in finding those
points L such that h%(C, L) = 2, and yet multy(Z) > 2. Thus in fact his concern was to
identify points L such that h°(C, L) = 2 and his Pfaffian equation failed to hold, i.e. where
it is identically zero. In that case, and that case only, he gave the necessary and sufficient
condition that if L is a point of Z, then mult; (E) = 1, i.e. L is a smooth point of Z, if and
only if h%(C, L) = 2 and h%(C, M) < 1 for every line bundle M on C such that 7*(M) < L,
if and only if the Pfaffian determinant of the corresponding 2 by 2 skew symmetric matrix
is non zero (M2, Prop., bottom of p. 343].

The principal goal of section III of [M2] is then to classify all possible examples of Prym
theta divisors which have enough double points to resemble Jacobians of curves. By [M2,
bottom p. 344, lemma p. 345] the main candidates are those = with a lot of points L,
such that C has an M with 7*(M) < L, and h°(C,M) > 2. It can be shown that at
most points of many such =, Mumford’s Pfaffian determinant is identically zero. E.g., for
g(C) > 7, the only possibilities are that C is hyperelliptic, trigonal, or superelliptic [M2,
Thm. (d), p. 344]. When C is hyperelliptic or trigonal, the Prym is either a hyperelliptic or
tetragonal Jacobian, and the general such Jacobian arises this way [M2, Thm. (a), p.344;
Re].

For a general such Jacobian J(X), most singular points of the theta divisor are double
points, and the tangent quadrics have base locus the canonical model of ¥ [Gr; S-V1]. Since
a tangent quadric at a double point of = also contains the Prym canonical model of C if
Mumford’s Pfaffian equation holds [T, lemma. 2.3, p. 963], that equation must fail at most
singular points of such =. Later Mumford mentions without proof the example of a Prym
representation for the intermediate Jacobian of a cubic threefold, where h°(C, L) = 4, but -
multy (Z) = 3, hence again his Pfaffian equation vanishes [M2, p. 348, lines 3-4].

In 1984 Shokurov extended the necessary condition for the validity of Mumford’s Pfaffian
tangent cone equation to the case h°(C, L) = 4 [S, Lemma 5.7, p. 121], and deduced the
Pfaffian vanishes at a large family of singular points of = in the third major class of
Mumford’s examples, Pryms of “superelliptic” curves. Knowing most of these points are
thus at least triple points, he deduced that such Pryms are not Jacobians of curves.

Thus the Pfaffian tangent cone equation in Mumford’s original paper does not hold in
general for the tangent cones of the Prym theta divisors which were the main subjects
of his investigation: Jacobians of curves and intermediate Jacobians of cubic threefolds,
and fails as well on a large locus of triple points for doubly covered superelliptic curves.
In conversation with one of the present authors around 1980, Mumford implied that he
knew an equation for the tangent cone in the case of the cubic threefold, but the published
computations for that example [B; S-V2; F, ex. 4.3.2, p. 80, lines 7-15] have only established
the set theoretic geometry of the tangent cone, and its multiplicity, without giving an
explicit equation.

A criterion for Mumford’s Pfaffian tangent equation to be valid
We have noted that essentially the only points where Mumford proved his Pfaffian
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equation valid are smooth points of Z. Next, his results imply that L on E is a double
point at which his Pfaffian equation holds if and only if mult;(Z) = 2 and h°(C, L) = 4,
if and only if L is a “stable double point”. These points play a key role in attempts to
prove the Torelli theorem for Pryms, since as noted Tjurin showed the quadric tangent
cones at such points always contain the Prym canonical model of C. The existence and
characterization of stable double points is not immediate however. Tjurin gives a correct
lower bound for the dimension of the locus of such points in general [T, p. 962, lines 8-10],
but it seems neither the hypotheses nor the proof [T, Lemma 2.1, p. 961; T, Correction]
are adequate. Not only a dimension count, but also non emptiness for the locus of points
L on = where h°(C, L) = 4, must be established. After that it still remains to show at
most such points that multy (Z) = 2, i.e. that the multiplicity is not higher.

In 1985 Welters proved that theta divisors on Prym varieties of generic doubly cov-
ered curves C do have a non empty locus of stable double points in codimension 5 when
g(C) > 17 [W]. In 1987 Bertram extended this to non emptiness at least of the “stable
singular locus” = {L € Z|r°(C,L) > 4}, for g(C) > 7, but did not settle the issue of
the multiplicities of the points [Ber|. In 2002 we completed the precise characterization of
stable double points by showing Shokurov’s necessary condition for validity of Mumford’s
equation when h%(C, L) = 4 is also sufficient [S-V4, Prop. 3.6, p. 246]. I.e. L on Z is a
stable double point if and only if h%(C, L) = 4 and h°(C,M) < 2 for all M on C with
7*(M) < L, if and only if L is a double point where Mumford’s Pfaffian gives an equation
for the tangent quadric. Then the stable singular locus of = is non empty of dimension
> g — 7 whenever g(C) > 7, and stable double points are dense in that locus whenever
g(C) > 8 and C is neither hyperelliptic, trigonal, nor superelliptic [S-V4, Th. 3.5, p. 246).

An analogous characterization of points of higher multiplicity where Mumford’s Pfaffian
equation holds, is announced in [S-V4] and proved in [S-V5|. The precise points at which
Mumford’s Pfaffian equation is non zero, and hence defines the Prym tangent cone, are
those L on Z such that there is no line bundle M on C with #*(M) < L and h°(C, M) >
%ho(é, L). It then remained to give Pfaffian equations for the other tangent cones to =,
and to give such an equation for = itself.

In the next section, we give a sketch of the well known determinantal structure for theta
divisors of Jacobians, intended as an orientation to the topic. The sophisticated reader
may wish to skip or peruse quickly this section. Afterwards we give a technical discussion
of this material, including a self contained proof of the existence of a local Pfaffian equation
for the Prym theta divisor, and a Pfaffian equation for the Prym tangent cones in all cases.

3. On the history of determinantal equations for theta divisors

Riemann’s period matrix

Riemann’s argument in his original paper on Abelian functions already shows that at
least the locus C7 of divisors D of degree d and dimL(D) > r on a given curve C, has
a local determinantal structure, where L(D) = {meromorphic functions f on C with f =
0 or div(f)+D > 0}. Le. his calculation of the linear conditions determining the dimension
of L(D), says that dimL(D) — 1 = dimker[S(D)|, where S(D) is a (2g) by (g+d) “period
matrix” for differentials of second kind, parametrized by the divisor D, [R1, p. 107, lines
-3, -4; R2, p. 99, lines 3,4]. Thus Cj is the locus of divisors D such that rank(S(D)) < -
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(d—r+g). |

When r = 1, Riemann himself explicitly says this [R1, p. 108, lines 11-13; R2, p. 99,
lines 14-16}, and immediately concludes that a generic curve of genus g, is expected to
have a non constant meromorphic function with at most d poles only if d > (¢/2) + 1, [R1,
p. 108, R2, p. 99], which he deduces from the inequality (d—1) > (¢+1—d) (= codimension
of the rank (d-1+g) locus, in the space of (2g) by (g+d) matrices). The similar estimate
(d—r) > r(g+r — d) gives the “Brill - Noether” estimate for C} to be non empty for all
curves of genus g.

If we normalize Riemann’s differentials of 2nd kind to have all “A - periods” equal to
zero as Roch does, [Ro, p. 373, lines -13, -14], Riemann’s period matrix becomes the g by
d matrix T'(D) of just the “B - periods”. This version is clearly stated for a modern reader
in [G-H, p. 244], where the map at the bottom of p. 244 is the one represented by T'(D).
We will also call this g by d period matrix “Riemann’s matrix”.

Roch’s residue map

Roch’s residue calculation of the matrix T(D) equates it with a matrix of values of
normalized differentials of first kind, evaluated at the points of the divisor D, [Ro, p.374,
eq. (1), where T'(D) = ——27ri[aﬂ“)]; G-H, p. 245, top of page (up to sign)]. This allows Roch
to restate Riemann’s rank characterization of dimL(D) in terms of values of holomorphic
differentials, instead of periods of meromorphic differentials, with significant advantages
both for computation, and for translation of the theorem into pure algebra.

On pp. 154-159 of [A-C-G-H], Arbarello et al. give Riemann’s rank characterization of
the loci C7 for all r using Roch’s matrix of residues, which they call the “Brill Noether”
matrix. Since the numerical entries in Roch’s “evaluation” or “residue” matrix are pro-
portional to those in Riemann’s “period” matrix, this argument does not yet fully exploit
the advantages of Roch’s re - interpretation of the meaning of that matrix, as we wish to
do next.

Since the statement dimL(D) > r, is invariant under linear equivalence of divisors,
one may suspect a rank characterization should also exist for the corresponding loci of
line bundles, but how is one to transfer the determinantal description of Cj, down to
W7 = {line bundles L in Pic?(C) with h°(C,L) > r}? Note the local “determinantal”
structure for C% = C(9) is given trivially by the zero equation, so for d < g, there is
apparently no way to modify it to an equation for the proper subvariety W9 = W,, in
Pict(C), in particular for the theta divisor W,_;.

In both Riemann’s and Roch’s interpretations, the matrix S(D) or T(D) depends on the
divisor D, while we need a matrix that depends only on O(D). It is interesting therefore
that an examination of the duality between the two interpretations of T' reveals how to
modify it to eliminate the dependence on the divisor D as follows.

Sheaf theoretic versions of the Riemann and Roch maps

The sheaf version of Riemann’s g by d period matrix is essentially the coboundary
map H°(C,O(D)|p) — H(C, ), induced from the sheaf sequence 0 — O — O(D) —
O(D)|p — 0, while Roch’s evaluation map is the transpose of the restriction map
H%(C,0(K)) — H°C,O(K)|p), induced from the sequence 0 - O(K — D) — O(K) —
O(K)|p — 0. This is fairly clear for Roch’s map.

For Riemann’s period map (in Roch’s normalization), the source is the space W (D)
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of meromorphic differentials with poles only at the points of D, of order at most 2 and
with all residues zero, modulo holomorphic differentials. Now the sections H°(C, O(D)|p)
of the skyscraper sheaf O(D)|p, is the space of possible principal parts for meromorphic
functions with pole divisor supported in D, hence differentiation takes this space to a
space of principal parts of differentials isomorphic to W(D), by the converse of the residue
theorem.

The target for Riemann’s map is the orthogonal complement (H4)t in HY(C,C) of
the span Hy4 of the A - cycles in H;(C,C). Since the subspaces (H4)* and HO(K) are
complementary in H!(C, C), we may regard (H 4)* as naturally isomorphic to the quotient
HY(C,C)/H°(K) = H'(C, ©). Thus the period map on meromorphic differentials modulo
holomorphic ones (i.e. normalized meromorphic differentials) goes into H'(C,C)/H%(K) =
HY(C,0).

So the coboundary map H°(C,O(D)|p) — H!(C,O) may be thought of as the compo-
sition taking a principal part in H®(C,O(D)|p) by differentiation to a principal part for
a meromorphic differential “of second kind”, then to a unique such differential (modulo
holomorphic ones), then to a cohomology class in H'(C,C)/H®(K) = H!(C, O).

Now the exact cohomology sequences coming from these two sheaf sequences are Serre
dual to each other, i.e. the sequence (1) of maps:

0 — H°(C,0) — H°(C,0(D)) — H°(C,0(D)|p) — H(C,0) —» H*(C,O(D)) — 0,

is dual to the following sequence (2):

0 — H°(O(K — D)) — H°(O(K)) — H°(O(K)|p) — H(O(K — D)) —» HY(O(K)) — 0.

In particular, the two restriction spaces H*(O(K)|p) and H°(C, O(D)|p) are naturally
dual, a fact that will be critical later, when this duality is used to state the condition of
skew symmetry.

Geometrically, Riemann’s map H°(C,O(D)|p) — H(C, O) is the derivative at D of the
Abel map C4) — Pic?(C) from the symmetric product of C to the Picard variety, while
Roch’s dual map H°(O(K)) — H°(O(K)|p), is the coderivative at D of the Abel map
C@) — Alb(C) from the symmetric product to the Albanese variety. In this interpretation
H%(C,0(D)|p) is the tangent space to C® at D, and H°(O(K)|p) is the cotangent space
to C{9) at D. [Compare A-C-G-H, p. 160, and lemma 2.3, p. 171, where they refer to the
coboundary version of Riemann’s map also as the “Brill - Noether” homomorphism.]

The trick of adding a “base divisor”

Now look at the sequence (2) above as intended to compute, not the cohomology of
D, but that of L = K — D, via the device of shifting by an auxiliary divisor D. Using
this technique on an arbitrary line bundle L, we can shift it by some large divisor D, and
use the exact sequence 0 — H°(L) — H°(L(D)) — H°(L(D)|D) — H'(L) — 0 arising
from the sheaf sequence 0 — L — L(D) — L(D)|p — 0 to compute the cohomology of
L, as kernel and cokernel of the evaluation map H°(L(D)) — HO(L(D)|p). This is more
efficient than sequence (2) itself, where one needs to know that h'(O(K)) = 1 in order to
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compute the cohomology of O(K — D), since now D may be chosen large enough so that
R} (O(L(D))) = 0.
A determinantal equation for the theta divisor Wy_4

If we fix D so that h*(O(L(D))) = 0 for all L in Pic?, this map H°(L(D)) —
H°(L(D)|D) now depends only on the line bundle L, and we have given W] as a rank
locus, at least once we have a universal family of line bundles, i.e. a Poincaré bundle,
on C x Pic*(C). In particular, for deg(Lg) = g — 1, and D a general divisor of de-
gree n = h®(Lo) = h*(Lo), the theta divisor Wy_; = W,_; is defined locally for L near
Lo, by the determinant of the n x n matrix of regular functions on Pic9=1(C), which
represents the family of maps H°(L(D)) — H°(L(D)|p). [Cf. K2, p. 31, p. 71; A-C-
G-H pp. 176-177]. The point here is that sending a line bundle L to a matrix for the
map H°(L(D)) — H°(L(D)|p), defines a classifying map from a neighborhood of Lg in
Pic?(C), to matrix space. The scheme W,_; is locally the pullback of the locus of sin-
gular matrices under this map, i.e. defined by the pullback of the universal determinant
equation on n x n matrices, where n = h%(Lg). Moreover, since D is chosen so that
HO(C, Lo) — H°(Lo(D)) is an isomorphism, and H!(C, Lo(D)) = 0, the point Ly maps
to the zero matrix representing H°(Lo(D)) — H(Lo(D)|p).

In fact, Riemann had already given a construction of a Poincaré line bundle for degree
g divisor classes using his theta function. ILe. the pullback of O(W,_1) by the subtrac-
tion map Pic?(C) x C — Pic9~1(C) is a universal line bundle of degree g, as Riemann’s
proof of “Jacobi inversion” shows, [K2, p. 154]. Indeed by translating to Pic?~! Rie-
mann proved his theta function vanishes exactly on W,_;. Kempf suggests that by taking
matrices of quotients of theta functions, Riemann could also have given a determinantal
characterization of W,_1 [K2, p. 166].

Determinantal equations for the tangent cones to W,_4

Now that we have a determinantal equation for Wy_1, how do we compute an equation
for its tangent cone at a given point L? By definition we want the lowest degree non zero
homogeneous form of the determinantal equation for Wy_,, which a priori may not itself
be the determinant of the matrix of lowest degree terms. Of course a natural candidate
is the determinant of the linear forms of the entries in the h°(L) by h%(L) matrix whose
determinant defines Wy_1, but to prove that, one must show this determinant is not zero.
It would suffice for example to know the multiplicity of the point is equal to the degree
of this determinant of linear forms, i.e. to know Riemann’s singularity theorem. This is
equivalent to showing that the tangent cone of Wy_, at L is defined by the universal
determinant for n x n matrices, where n = h®(L), i.e. the tangent cone at the zero matrix,
after pullback by the derivative at L of the classifying map above.

A more direct approach, without using the determinantal equation for W,_;, is simply
to write down the appropriate determinant of linear forms, prove it is non zero, reduced
and irreducible, and vanishes on the tangent scheme to W,_; at L. Kempf does this
in [K1], when he shows that if {w;} is a basis for H°(C,O(L)) and {z,} is a basis for
H°(C,O(K — L)), then the determinant of the matrix [w; - z;] is non zero and vanishes on
the image of the normal cone in C9~1) to the linear series |L|, under the derivative of the
Abel map C9~Y — W,_; C Pic?~!(C). This idea apparently goes back to Andreotti and
Mayer [A-M], and we learned it from Mayer about 1968. Kempf also shows his tangent
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equation is the pullback of the universal determinant by the derivative of the classifying .
map; see [K2, §18]. Even stronger [cf. K1, Theorem, p. 183], the local classifying map from
Pic9~1(C) to the space of square matrices is transverse to the standard map resolving
the locus of singular matrices, since the divisor variety C9~! is smooth in its pulled back
scheme structure.

The case of Prym varieties

Now how does all this descend to the Prym case? The Prym theta divisor = in P in
Pic3=1(C), is defined so that W;_; meets P in the divisor 2-Z, i.e. the local determinantal
equation for Wg_l restricts to the square of a local equation for =. Hence the lowest order
non zero homogeneous form of this restriction is the square of an equation for the tangent
cone to = at L.

Since the Prym variety is the skew symmetric part of the Jacobian Pici~1(C) under
the involution induced by the double cover 7 : ¢ — C, and since the determinant of a
skew symmetric matrix is the square of its Pfaffian, the most natural explanation for this
situation would be that both the Prym theta divisor and its tangent cones are given by
Pfaffians. We prove these results along the lines indicated for Jacobians. One must make
explicit in what sense the map H°(L(D)) — H°(L(D)|p) becomes skew symmetric for L
on the Prym theta divisor. With some care taken in the choice of the auxiliary divisor D,
a natural residue pairing is nondegenerate on a neighborhood of a given point Lo € E and
everything works out as might be expected.

4. Brief technical review of the determinantal structure defining a Jacobian
theta divisor

Let C be a connected, smooth, projective curve of genus g > 1. Set J = Pic?"}(C)
and © = {L € J | h°(L) > 0} (also known as W,_1(C)). We will use these models
for the Jacobian variety and its theta divisor, and then the Abel map C(9~1) — © c J
parametrizing the Jacobian theta divisor is defined by D — O¢(D) for D € C(9-1),

Let P be a Poincaré line bundle on C x J, that is, any line bundle on the product such
that the mapping J — Pic(C), defined by L — P|cxz} (on C x {L} = C), is simply
the inclusion of J = Pic?™1(C) in Pic(C). Now let D be an effective divisor on C and
consider the corresponding divisor D x J C C x J on the product. Then one gets the exact
sequence

0—-P—->PDxJ)—P(DxJ)pxs—0

on C x J. Let ¢: C x J — J be the projection, and push these sheaves forward by q. One
obtains on J an exact sequence

0 — q.(P(D x J)) = ¢.(P(D x J)|pxs) = R'q.(P) = R'q.(P(D x J)) - 0

since ¢, (P) =0 (H°(L) =0for L € J —©) and R'q.(P(D x J)|pxs) =0(q: DxJ — J
is a finite morphism).

If the divisor D has sufficiently large degree (specifically, deg(D) > g, so that H!(L(D))
=0 for all L € J), then ¢,(P(D x J)) is a vector bundle on J and Rlq.(P(D x J)) = 0.
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In this situation, if we set & = q.(P(D x J)), F = ¢«.(P(D x J)|pxs), and R = Rlq,(P),
then we have the exact sequence

0-EE—-F-R—-0

of coherent sheaves on J. The key point is that for every L € J, the cohomology vector
spaces H°(C,L) and H'(C,L) now occur as the kernel and cokernel of the linear map
H°(C, L(D)) — H°(C,L(D)|p) induced pointwise on fibers at L by the homomorphism
from £ to F. The 2-term complex £ — F is a map of equal rank vector bundles whose
associated determinant line bundle and section on J define the Jacobian theta divisor
O C J = Pict~ ().

Recall that for a homomorphism h : £ — F of rank r vector bundles, the determinant
line bundle is A™(£)* ® A™(F) and its (determinant) section corresponds to the induced
homomorphism A"(h) : A"(£) — A"(F) on the top exterior powers. In other words, the
resulting section of the line bundle A™(€)* ® A" (F) is an abstract, basis free, determinant
for h. Also note that the structure of a vector bundle map contains more information than
just the determinant line bundle and its section. For instance, the map O; — O;(©) of
equal rank vector bundles defines the same determinant line bundle and section, but even
locally is not the “correct” determinantal structure for defining the Jacobian theta divisor
since at singular points of ©, the cokernel is different from R = Rq.(P). For another
example, the dual vector bundle homomorphism F* — £* has the same determinant line
bundle and section, but may have a different cokernel.

Now we state a detailed local description of the well-known determinantal structure for
a Jacobian theta divisor. All of the properties given here are treated in great detail in [K2]
and can also be found in [A-C-G-H]. To obtain this version around a given point L € O,
one follows the same route as indicated, but with the following refinement. If h!(L) = n,
then one can take an effective divisor D of degree n on C such that H(L(D)) = 0 and
obtain the sequence 0 — £ — 7 — R — 0 on a neighborhood of L in J. Then trivializing
the rank n vector bundles £ and F on a neighborhood of L will represent the map & — F
by an n x n matrix (of regular functions).

Theorem (Mumford and Kempf): Fix L € © C J and let n = h°(L). Then there exists
an n x n matrix ® = (p;;) of regular functions on a neighborhood U of L in J such that
det(®) is a local equation for © in J around L. Moreover, .
(1) the matrix ®; of linear terms at L has an intrinsic interpretation as the dual of the
“Petri map”: H°(L)Q@ H(K®L*)— H°(K) defined by cup product. Of course, the matrix
®, has entries A;; = dy;;|L and represents the derivative at L of the map ® from U to the
space of n x n matrices. In fact, ®; is a “Riemann-Kempf matrix” for the tangent cone
CL(©), in the sense that there exist bases {01, ...,0n}, {71, ..., 7n} of HO(L), H*(K ® L*)
resp. such that \;; = oy - 7; in H°(K) = T}(J) and det(®) is an equation for C1(©).

(2) the Abel map C9~1 — © C J is induced in U from the family of projectivized kernels
of the singular matrices by pullback via ®.

Examples:
(i) double points of ©. If h°(L) = 2, then
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b = {a b} and det(®) = ad — be
c d

where a, b, ¢,d are regular functions vanishing at L. Thus, © is defined locally by ad —

bc = 0. If the double point has rank 4, then the differentials of these functions are

linearly independent linear forms, say z,y, z,w, and the tangent cone C1(©) has equation

Tw —yz = 0.

Instead if the double point has rank 3, with tangent cone z2 — yz = 0, then knowing
about the higher order terms in ® is essential for determining the local structure of ©.
Indeed, if we include a = z,b = y,¢ = 2z in a local (formal) coordinate system, then
d =z + A (where A consists of the terms of order at least 2) and the local equation for
© is 22 — yz + A = 0. Then completing the square by writing z = & + %, the 2 x 2
matrix becomes ¢ = [“: g] + [Cg _OQ] + ..., and the determinant takes the form
2 —yz+Q*+..., where Q is a quadratic form (and the dots indicate higher order terms).
It seems surprizing to get such a restricted form in this case for the local equation defining

©CJ.

(ii) triple points of ©. If h°(L) = 3 and the Petri map for L is injective, then the
singular scheme Sing(©) is reduced at L. Here, the scheme structure on the singular locus
of © is defined by a local equation ¥ for the hypersurface © C J and the partials of 9.
Indeed, the local map from © to the space of 3 x 3 matrices is submersive, so it suffices
to check the structure at 0 of the singular scheme of the hypersurface of 3 x 3 matrices
with determinant zero. The equations for this singular scheme are simply the collection of
all 2 x 2 minors, so this scheme is the cone over the standard Segre embedding of P? x P2
in P8 and is quite singular at the origin, but is reduced (and Cohen-Macaulay). (In this
connection, we would like to thank O. Debarre for inquiring years ago about something
misleading we wrote about triple points of Jacobian theta divisors, and we thank P. Aluffi
for some discussion of triple points of hypersurfaces.)

5. The local Pfaffian structure defining a Prym theta divisor

Now we head towards our formulation of the local existence of a “Pfaffian structure”
on the Prym variety of an étale double cover. We work over an algebraically closed field &
of characteristic # 2. Let C be a connected, smooth, projective curve of genus g > 1, and
let 7 : C — C be a connected étale double cover. Then C has genus g = 2g — 1, and we let
J = Pic9~1(C) denote the Picard variety of line bundles of degree § — 1. Our models for
the Prym variety and its theta divisor are P = {L € J | Nm(L) = K¢ and h°(L) is even}
and Z = {L ¢ P | H°(C, L) # 0}.

Theorem: Let (P,Z) be the Prym variety of an étale double cover 7 : C — C. Let L be
a point of the Prym theta divisor = C P, and set n = ho(é’, L). Then there exists an open
neighborhood U of L in P and a skew-symmetric n X n matrix M of regular functions
on U vanishing at L such that the Pfaffian of M is an equation in U for the divisor =. -
Moreover,
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(1) the skew-symmetric matrix M; of linear terms at L has an intrinsic interpretation as -
the dual of the Prym-Petri map, and

(2) the Abel map X — = C P is induced in U from the family of projectivized kernels of
the singular skew-symmetric matrices by pullback via M.

Before proceeding with the proof, let us explain the precise meaning of (1) and (2).
The derivative at L of the inducing map M = (f;;) : U — Alt(n) = {skew-symmetric n x
n matrices} is given by the matrix M; of linear terms w;; = dfi;|r. Now we make the
identification Ty, (U) = To(P) = H°(C, Kc(n))*, where n is the 1-period defining the given
étale double cover of C. Since Alt(n) can be regarded as the alternating bilinear forms on
k™ = H°(L), we equate the tangent space Ty, (Alt(n)) with A2(H®(L)*), the alternating
bilinear forms on H°(L). Then the derivative dM|, is a linear map H°(C, Kc(n))* —
A2(H°(L)*) and the dual linear map A%2(H°(L)) — H°(C,Kc(n)) is the “Prym-Petri
map” as defined in [W, p. 673; cf. M2, p. 343].

Let X = {D € C(?9=2 | Nm(D) € |K¢| and h°(D) is even}, and let ¢ : X — E be the
restriction to X € C(29~2) of the standard Abel map C?9=2 — P defined by D — Oz(D).
Then there is an isomorphism ¢~}(U) = {(u, [v]) € U xP"*~! | M,v = 0}, commuting with
the projections to U; in particular, for u = ¢(D) = Ox(D), the fibre of the Abel map over
uis ¢~ (u) = |D| 2 P(ker M,).

Proof: Fix the notation Lg for the given point of = so that we can use “L” for a variable
point of P. We will give the construction in stages and indicate the successive assumptions,
keeping the neighborhoods of Lo in P as large as possible.

(i) We will work with the restriction to the Prym variety of the vector bundle homomor- .
phism £ — F constructed for the Jacobian case on J = Pic?9—2((C). However, this time we
need to arrange a particular normalization of the Poincaré bundle in order for the point-
wise isomorphisms 7*(Nm(L)) & K = K to work globally on P. (Note the ¢ Mumford
uses in [M2], the footnote in [D-P, p. 688], and [F-P, p. 93].) Though such a normalization
is part of our construction, once we find the normalization we will present most of the
calculations pointwise for simplicity. At any rate, the condition that Nm(L) = K¢ on C
(which is stronger than 7*(Nm(L)) & K on C) is essential in our proof of skew-symmetry
of the vector bundle homomorphism ux : A — A* constructed below.

For any Poincaré line bundle P on C x J, consider the restriction Q = 7P| &xp o C x P,
and the map (m,id) : C x P — C x P. What we need to specify is an appropriate choice
of P admitting an isomorphism ¢ : (m,id)*(Nm(x iq)(Q)) =, p*(K), where p: C x P —
C is the projection. We will indicate the geometry leading in fact to an isomorphism
Nmx ia)(Q) — p&(Kc), where pc is the projection C x P — C.

Any line bundle on the product C x P defines maps

C — Pic(P)
P — Pic(C)

and is determined by this pair of maps. To analyze what is involved, note first that
the two line bundles Nm(, ;4)(Q) and pi(Kc) on C X P both define the constant map
P — Pic(C) with value K¢, by construction. Thus we want to adjust 7 by the pullback of



13

a line bundle from J so that the morphism C — Pic(P) defined by Nm, i4)(Q) coincides
with the 0-map defined by p(Kc¢).

It is well known that the identity component of Pic(j ) is canonically isomorphic to
Jo = Pic®(C) and P may be chosen so that the induced map a : C — Pic(J) is given by
a(z) = Oa(x — x0) for some base point o € C. 1t follows that the map b : C — Pic(P)
induced by Q is given by b(z) = Og(x — z') @ by, where by = Ogz(x0 — z5) € Pic®(C).
(Here z — &' = (x) is the involution on C corresponding to the double covering map
7.) Therefore the map C — Pic(P) defined by Nm, ;q4)(Q) is the constant map y —
b(x) 4+ b(z') = 2b; for y € C and 7~ (y) = {z,z'}. Then since 2b; (but not b; itself!) is in
the identity component Py of the kernel of Nm : Jo— Jo = Pic®(C) and id —¢* : Jo — Py
is surjective, there exists a; € Jp such that 2(a; — a}) = 2b; (where a} = ¢*(a1)). Thus by
subtracting a; we can adjust P as desired.

_ Having normalized the Poincaré line bundle P on C x J, let D be an effective divisor on
C such that H'(C, Lo(D)) = 0 and construct as in the previous section an exact sequence

0-&E-2F—-R—0

on the open neighborhood {L € J | HY(C, L(D)) = 0} of Lo in J, where £ = q.(P(D x J))
and F = q.(P(D x J)|p, j) are vector bundles of rank = deg(D), and R = R!q.(P) is a
coherent sheaf. Now let

0—>.A—}l+B—>S—>O

be the induced exact sequence of sheaves on the open neighborhood Uy = {L € P |
HY(L(D)) = 0} of Ly in P, where A and B are respectively the vector bundles |y,
and Fly, and S is the coherent sheaf R|y,. Note that the map h is injective as a sheaf
homomorphism since A is a vector bundle and h is injective on a generic fibre. Indeed,
h induces an isomorphism of vector bundles on the complement of E in P since the sheaf
sequence A — B — S — 0 is exact, S is 0 outside Z, and A and B have the same rank.

(ii) With the above notation we have a homomorphism h : A — B of vector bundles on
Uy ={L e P | HY(L(D)) = 0}. (If deg(D) > g, then Uy = P.) At L € U the two vector
bundles have fibres A|;, = H°(L(D)) and B|, = H°(L(D)|p), and the linear map hr on
the fibres is simply the natural restriction map H°(L(D)) — H°(L(D)|p) from the global
sections of L(D) to their values on D C C.

Now assume that the effective divisor D on C consists of distinct points, and that D and
its conjugate D’ (under the involution on é’) are disjoint. We will define a vector bundle
homomorphism 3 : B — A* so that the composition p = Boh : A — A* is skew-symmetric.
Of course the dual vector bundle A* has fibres A*|, = H°(L(D))* and for simplicity we
give the prescription for 3 pointwise on Uj.

Thus we want to define a linear map:

H°(L(D)|p) £ HO(L(D))*

and it suffices to specify the corresponding bilinear pairing:
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HO(L(D)|p) x HY(L(D)) 2% k

We let ¢ denote the involution of the double cover C and use D’ (resp. L) to denote
the conjugate of a divisor D (resp. line bundle L) with respect to the action of .

Definition of By: Take s € H*(L(D)|p) and 7 € H°(L(D)), and proceed as follows. First
map (s,7) — (s,0*(1)) = s®*(1)|p € H*(L(D)|p®L'(D’')|p) = H°((L®L')(D+D’)|p).
Next use the isomorphism ¢ : LOL' = K to obtain ¢(s®u*()|p) € H*(K(D+D')|p), and
then finally apply rp : H*(K(D+D')|p) — k, ending up with the scalar rp (¢(s®¢*(7)|p))-
Here rp denotes the composite map H°(K (D + D')|p) = H°(Op) ™ k, where we have
used K(D)|p = (K|p)®Op(D) = Op (from the natural duality signaled in section 3 after
the long exact sequences (1) and (2)) and O(D’)|p = Op (since D and D’ are disjoint).
Note that for w €eHY(K(D + D')), rp(w|p) = Resp(w), the sum of the residues of the
rational differential w at points of D.

Let’s look back at the various steps in the procedure defining B (s, 7). We start with
(s,7) € H°(L(D)|p) x H°(L(D)) and successively apply the mappings H°(L(D)|p) x
HO(L(D)) = H(L(D)|p) x H*(L'(D')) — H°(L(D)|p) x H*(L'(D")|p) — H*((L(D)Ip®
L'(D")|p) = H°((L(D) ® L'(D"))|p) & H°((L ® L')(D + D")|p) = H*(K(D + D")|p) =
H°(Op) — k.

Now if 3 : B — A* is the linear map defined by the bilinear map B : B x A — O, we
check the skew-symmetry of the map = Soh : A — A*. First note the intrinsic meaning
of skew-symmetry here. The dual vector bundle A* is Homo(A,O) and the standard
natural identification A — (A*)* goes as follows: a — (v — 7(a)) for local sections a
of A and v of A*. Then the linear map u : A — A* has a dual linear map p* : A
(A*)* — A*, with u*(a) defined by the formula p*(a)(b) = (u(a))(b) for local sections b
of A. Skew-symmetry of u means that u* = —p, and this is equivalent to the condition
that (u(a))(d) = —(u(b))(a), in other words, that the bilinear form (a,bd) — (u(a))(d) is
skew-symmetric (or alternating) in the usual sense.

Thus, let R : A x A — O be the bilinear form defined by R(o, 7) = (u(0))(7). We must
check the skew-symmetry of this bilinear form and we can do that fibrewise. Thus we take
o € HO(L(D)) = A|L, calculate u(c) € H°(L(D))*, and apply it to T € H°(L(D)). We get
R(a,7) = (u(0))() = ((Boh)(0))(r) = B(h(0))(r) = B(o|p, ) = Resp(< 0,7 >), where
< 0,7 > denotes ¢(c®*(7)) € H*(K(D+D'")), (asin [M2, p. 343]). But Resp(< 7,0 >) =
Resp:(*(< 7,0 >)) = Resp:(< 0,7 >) and then Resp/(< 0,7 >) = —Resp(< o,7 >) by
the residue theorem. So, —Resp(< 7,0 >) = Resp(< 0,7 >) and skew-symmetry holds.

(iii) Now for our fixed Ly € Z, assume that D also satisfies H'(Lo(D — D’)) = 0. Note -
that the existence of such D does not present a problem. Indeed, what is clear is that
if Nm(L) = K¢ and h°(L) = h!(L) > 0, then {p € C | h°(L(p)) = h°(L)} and {p €
C | KO(L(=p')) = h°(L) — 1} are nonempty open subsets of C. Hence there exists a
point p € C outside of any specified finite subset of C such that h°(L(p)) = h°(L) and
hO(L(—p')) = h®(L)— 1; then for such p, h°(L(p —p')) = h°(L) — 1. (There is a much more
precise parity result that is known, but we do not want to assume that result here since
we will deduce it in section 5(b) below.) Now Nm(L(p — p')) = K¢ and h!(L(p —p')) =
hO(L(p — p’)) has gone down by 1 so we continue until we get the desired D =p+....
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Now we claim that §: B — A* is an isomorphism on the open neighborhood U; = {L € -
P | H(L(D — D')) = 0} of Lo in P. Note that HY(L(D — D')) = 0 = HY(L(D)) =0
(from the short exact sequence 0 — L(D — D’) — L(D) — L(D)|p» — 0), so Uz C Uj.

It suffices to see that for each L € Uy, the linear map 81 : H*(L(D)|p) — H°(L(D))* is
an isomorphism, and §r, being an isomorphism is equivalent to the pairing By, being perfect.
But the restriction map H°(L(D)) — H°(L(D)|p/) is an isomorphism by the hypothesis
(since the kernel of this mapping is H°(L(D — D’)) = 0, and the 2 vector spaces have the
same dimension). Thus, the analysis of the pairing By, on H°(L(D)|D) x H°(L(D)) is re-
duced to the case of the pairing H(L(D)|p)x H*(L(D)|p-) & H°(L(D)|p)xH°(L'(D’)|p)
— k, which is easily seen to be perfect by checking pointwise on D.

(iv) Finally, assume that the divisor D consists of exactly n = h°(Lo) points (with the
previous assumptions holding as well) and take any trivialization of A on an open neigh-
borhood U of Lg in Uy C P. Then, in terms of the basis of sections sy, ..., s, for A on U
and the Kronecker dual basis of sections t1,...,t, of A*, let M be the matrix representing
p. That is, M has i, j entry fi; = u(s;)(s;). Then M = (fi;) is an n x n matrix of regular
functions on U and this matrix is skew-symmetric since the corresponding linear map u
is skew-symmetric. Now we address Prym-Petri and Abel. These follow readily from the
corresponding well-established properties in the Jacobian case. Indeed, for (2), u has the
same family of kernels on U as h, only now the matrices representing the linear maps ur,
are skew-symmetric.

For (1), we will express the first order variation of {ur} at Lo in terms of the first
order variation of {hy} and the map g, itself. Namely, consider Taylor expansions h =
hi+hy+... and 8= Bo+ B1 +... for h and B8 around Lo. (Just take arbitrary local
trivializations for A and B, and represent h : A — B and 8 : B — A* by matrices. The
term hg = O since h has been arranged to vanish on the fibre at Ly.) Then the Taylor
expansion for the composition is given by matrix multiplication: u = foh = (Bo+061+...)o
(hi+ho+...)=Foohi+(Booha+B1ohy)+.... All we need to identify is the linear term
Boohi. We assume from the Jacobian case (for C') that h; matches up with the restriction
to To(P) C To(J) of the map To(J) — Hom(HO®(Lo),H!(Lo)) corresponding to the Petri
map (in one of the several ways the Petri map and its dual can be expressed). Recall here
that since h vanishes at Lo, we have isomorphisms H%(Lo) — H°(Lo(D)) = AL, and "
B, = H(Lo(D)|p) = H(Lo).

Now we know what the map Go : H°(Lo(D)|p) = H°(Lo(D))* is, but we have to check
that the induced isomorphism H(Lg) =2 H°(Lg)* is the one we want. More generally
consider the similar situation for any L € P:

H°(L(D)|p) —2-— HO(L(D))*

! !

HY(L) HO(L)*

We will check that 8 induces the natural isomorphism H'(L) — H°(L)* defined suc-
cessively by HY(L) = H°(K ® L*)* = H°(L')* = H°(L)*. Thus, look at the 2 pairings:
By : H(L(D)|p) x H(L(D)) — k and C : HY(L) x H*(L) — k. Take s € H(L(D)|p)
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and its image t € H'(L), and take v € H°(L) and its image 7 € H°(L(D)). We claim
that Br(s,7) = C(t,u). Here, Br(s,7) is defined as before to be rp(¢(s ® *(7)|p)), and
C(t,u) is calculated as follows. Suppose u « t*(u) = «' < 4 under the isomorphisms
HO(L) = H°(L') = H°(K ® L*). Then C(t,u) is the scalar corresponding to the element
tUd € HY(K) under the fundamental isomorphism H*(K) = k.

Now set N = K ® L*. There is the multiplication pairing H°(L(D)|p) x H°(N(D')) —
H°(L ® N(D + D')|p), but we can canonically identify N(D + D')|p with N(D)|p since
D and D’ are disjoint effective divisors. Then what we need boils down to the fact that
the isomorphism H!(K) = k is induced by the residue map H°(K(D)|p) — k, and the
commutativity of the following diagram:

H°(L(D)|p) x H*(N) —— H°(L® N(D)|p)

l !

HY(L)x H(N) —— HYLQ®N)
That is, the upper multiplication pairing involving principal parts of L induces the lower
cup product pairing on cohomology; see [K2, §3,6, esp. p. 43].

Now we have formed the map To(P) — Hom(H°(L), H°(L)*) = {bilinear forms on
H°(L) x H°(L)}. However,as Mumford indicated [M2, p. 343] (in his notation, that w;; is
skew-symmetric), this map from Tp(P) actually goes to {skew-symmetric bilinear forms on
HO(L) x H°(L)}, and thus agrees with the Prym-Petri map. Q.E.D.

Example: stable double points of E. Recall that a double point L of E is called stable
(w.r.t. the given étale double cover 7 : C — C) if h°(C, L) = 4. Then

0 z a b
*x 0 ¢ d _

M = £ x 0y and Pf(M) = zy — ad + bc,
* % x 0

where z, ¥, a, b, ¢, d are regular functions vanishing at L, so the quadratic form defining the
quadric tangent cone Cp,(Z) has rank < 6.

6. Remarks on global aspects of the local Pfaffian structure defining a Prym
theta divisor

If o : A — A* is the skew-symmetric vector bundle homomorphism constructed above
on P, then its Pfaffian Pf(u) defines the Prym theta divisor Z in U = {L € P | H*(L(D —
D')) = 0}. Here the Pfaffian line bundle of p is A"(A*), where n = deg(D) is the rank
of A, and Pf(y) is a section whose square is the section of (A™(A*))®? corresponding to
the homomorphism A™(u) : A"(A) — A™(A*) induced by p on the top exterior power.
However, Pf(u) vanishes on the complement of U as well. In other words, the complex
(A £ A*) on P could be viewed as a global “Pfaffian structure” on P defining in fact
E U(E+7), where 7 is the point Os(D’ — D) of Py (the abelian variety model of P inside
the abelian variety model Jo = Pic®(C) of the Jacobian of the double cover). Thus we

return to the original complex (A LA B) on P, and then we obtain the following result.
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Proposition: Assume that the effective divisor D on C has degree at least g, consists
of distinct points, and that D and its conjugate D’ are disjoint. Consider the previously
constructed homomorphism h : A — B as a 2-term complex (A — B) of vector bundles
on P. Then there exists a homomorphism ¢ from the complex (A — B) to the complex
(B* — A*) such that § is skew-symmetric and is a quasi-isomorphism on all of P.

Proof: With 8: B — A* as before, set a = —(3* : A — B*. Then, the following diagram
commutes

B P, 4
ST
A —2 5 B
since the composition y = Boh : A — A* is a skew-symmetric vector bundle homomor-
phism by the previous calculations. In other words, we know that (8o h)* = —f o h, so

h* o B* = — o h and hence h* o @ = B o h as desired.

Thus § = (e, ) is a homomorphism of complexes from (A — B) to (B* — A*). By
skew-symmetry of § we mean simply that « = —f3* (and f = —a*), which holds by
construction.

It remains to check that é is a quasi-isomorphism of complexes, i.e. induces an isomor-
phism on the cohomology sheaves. Since the kernel sheaves of the 2-term complexes are 0,
all we have to check is that 3 induces an isomorphism on the cokernel sheaves. For this,
it is enough to check pointwise that both oy and 81 induce isomorphisms on the 0% and
12t cohomology vector spaces at L, i.e. that the induced maps co : H°(L) — H!(L)* and
c1 : HY(L) — H°(L)* are isomorphisms. (Indeed, if ¢: & — T is the map on the cokernel
sheaves, then the induced map S|, — 7| on the fibres at L is ¢; and the induced map
Tor1(S,kr) — Tor1(T, kL) is co. So by Nakayama’s Lemma, if ¢; is surjective for every
L, then coker(c) = 0, and after that, if o is surjective and ¢, is injective, then ker(c) = 0.)
But ¢; = —c}, and the source and target have the same dimension, so it suffices to show
that ¢o is injective. Thus, suppose that co(7) = 0 for 7 € HY(L) c H°(L(D)) = Al..
Then —Bp(-,7) = 0 in HO(L(D)|p)* = B*|L, so ¢*(7) must lie in H°(L'(—D)) and hence
7 must lie in H°(L(—D’)) = 0 (since deg(L(—D')) < 0). Q.E.D.

The result just presented is our analysis of the exact sequence 0 - A — B —- S — 0on
the Prym variety. We were unaware of the general result, Theorem 9.2 (skew-symmetric
version) of [E-P-W2]. In the terminology of [E-P-W2, §9], the cokernel S is a “skew-
symmetric sheaf” on P since our Proposition above produces the resolution structure in
their Thm. 9.2, part (b) (without twisting by a line bundle). This sheaf S, whose fibre at
L is H'(L), has the structure of a rank 2 vector bundle on the smooth points S, of the
Prym theta divisor, and in fact determines the étale double cover 7 : C — C, as long as
the singular locus of = has dimension less than g-5; see [S-V3] and [N].

Although the main constructions for Prym varieties in this paper are quite similar to
those in [M1, pp. 182-184, 186-188], they are not exactly the same. Let us spell out -
the relation. Mumford uses a divisor on the base curve C and, in the notation of [F-P,
p. 94], forms a vector bundle V on P with a nondegenerate O-valued quadratic form, and
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2 maximal isotropic subbundles U« and W of V. Let us write the pullback divisor on C in
the form D + D’ and use D = Nm(D) to denote the divisor on C. Recall that for L € P,
the direct image of the line bundle L on C is the rank 2 vector bundle £ = m.(L) on C,
with fibres €5 = L, ® Ly = L, @ L, where 77'(p) = {p,p'}. Then the fibres of V, W,
and U at L are:

Vi = E(D)/E(-D) = L(D)/L(-D) & L'(D)/L'(-D)

W, = H(&(D)) and Uy = L/L(-D)® L'/L'(-D).

Our vector bundle A has Ay = H°(L(D)), and is half the size of W (and our B has
half the size of U). The vector bundle A has the skew-symmetric bilinear residue form R
defined on it. Note, by the way, that one could proceed as in [F-P, pp. 71-72] to consider
A@ A* with its canonical symmetric(!) form so that the graph {(a, R(a,-))} is a maximal
isotropic subbundle, and A @ 0 is another maximal isotropic subbundle. Instead, we can
map A to the bundle V in Mumford’s construction. To see the relationship between the
alternating form on .4 and the (nondegenerate) quadratic form on V, look at the fibre V.
Since L' = K ® L*, we have L(D)/L(-D) ® (K ® L*)(D)/(K ® L*)(—D) and Mumford
pairs from L(D) x (K ® L*(D)) to K(2D) and takes the residue. It had been noted in
[E-P-W2, §2], that the data present in the orthogonal bundle setup (U, W C V) could be
used locally, after a certain choice, to obtain a skew-symmetric map; namely, the natural
map U — W* preceded by a suitable local isomorphism from W to U becomes (locally) a
skew-symmetric map from W to W*. Independently, we found a direct local construction
without any further choices. In essence, we have gone back to the explicit residue formula
embedded in Mumford’s original construction and emphasized the skew-symmetry property
of the residue formula in the Prym variety case.

7. Applications of the local Pfaffian structure defining a Prym theta divisor

(a) Some standard features

e O|p = 2% since the determinant of a skew symmetric matrix is the square of the
Pfaffian.

e hO(L) is even for all L € P since for a family of skew-symmetric matrices, the kernel
dimension has constant parity. {In order for this property of P not to appear tautological,
suppose here that P is defined as a connected component of Nm~!(K¢) C J that is not
entirely contained in ©.]

e The parity of h°(L) is opposite on the 2 connected components of Nm~(K¢). See
part (b) below.

e Mumford’s Pfaffian of linear terms for L € Z either provides an equation for the
tangent cone Cr,(Z) or else is identically 0. See part (c) below.

e T'wo types of singularities are possible on the Prym theta divisor since a point L € =
is singular if and only if it is pulled back from a singular point of the locus of singular
skew-symmetric matrices or is a singular point of the map to the skew-symmetric matrices.
[Recall that L € Z is a stable singular point if h%(C, L) > 4, and is an exceptional singular
point if there exists a line bundle M on C with h°(C, M) > 2 and an effective divisor B
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on C such that L = 7*(M)(B). Note that the 2 types of singularities are defined in terms
of the étale double cover 7 : C' — C and are not mutually exclusive.]

In this connection, note the following hierarchy of conditions on the germ of an inducing
map M : (P,L) — Alt(n) for = C P around a point L € Z. (i) the Prym-Petri map
A?(H°(L)) — H°(C,Kc(n)) is injective < (ii) M is submersive = (iii) M is transverse
to the map {(A4, [v]) € Alt(n) x P*~! | Av = 0} — Alt(n) & (iv) X is smooth along |L|
(given that X is known to be purely of the expected dimension g — 1) = (v) the tangent
cone C(Z) is defined by Mumford’s Pfaffian of linear terms. The implication (iv) = (v)
was proved in [S-V2, Thm. 2.1].

(b) The Wirtinger-Mumford parity results

We will give an analysis of the fundamental parity flipping result that Mumford proved
in [M1] (and attributed to Wirtinger in the classical, analytic case). A nice direct argument
can be found in [T, proof of Lemma 1.6, p. 955].

Theorem (Wirtinger and Mumford): Suppose that L € Pic29~%(C) is “precanonical”,
i.e. Nm(L) = K¢ € Pic?9~2(C). Then for any point p € C, the parity of h°(L(p — p')) is
opposite that of h°(L). More precisely, either

(a) h%(L(p — p') = h®(L) — 1 (in case |L| # ¢ and p’ is not a base point of |L|), or else
(b) h®(L(p — p') = h%(L) + 1 (in case |L| = ¢ or p’ is a base point of |L|).

Proof: We set up the local Pfaffian structure around the point L of Pic29~2(C) and then

use a closely related Pfaffian stucture around L(p — p’). Assume that the pair (D, D’)

is adapted to L, i.e. H°(L(D — D’)) = 0. (The existence of such a pair was argued in

part (iii) of the proof in section 5. In the terminology of [K2, p. 34|, a line bundle L is

called “adapted” to a pair (D, E) of effective divisors if deg(L) + deg(D) —deg(F) =g—-1-
and H(L(D — E)) = 0. It follows readily [K2, Lemma 5.1] that H!(L(D — E)) = 0 and

the restriction map H°(L(D)) — H°(L(D)|g) is an isomorphism. Kempf’s monograph

[K2] then goes on to show in detail how the pair (D, E) helps analyze the linear map

H°(L(D)) — H°(L(D)|p), which is a complex computing the cohomology of L.)

Then note that the pair (D +p’, D’ +p) is adapted to L(p—p’) since L(p—p")((D+p’) -
(D' +p)) = L(D — D'). Now we know that H°(L) is realized as the kernel of the skew-
symmetric linear map pr : H°(L(D)) — H°(L(D))*. And likewise H°(L(p—p')) is realized
as the kernel of the skew-symmetric linear map pr,(p—py : H°(L(D+p')) — H°(L(D+p'))*.
Note that the first vector space H°(L(D)) has dimension h°(L(D)) = deg(D) and the
second vector space H°(L(D+p')) has dimension h°(L(D+p')) = deg(D+p') = deg(D)+1.
Also, the first vector space injects naturally (left vertical arrow) into the second vector
space so that the following diagram commutes:

HY(L(D +p)) =220, HO(L(D + p'))*
HYL(D)) 2~  HO(L(D))*

If we take compatible bases for the 2 vector spaces, the larger skew-symmetric matrix
M, (for the upper horizontal map pr,(p—py) consists of the smaller skew-symmetric matrix
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M, (for the lower horizontal map pr) plus an additional row and column. The ranks of
M; and M, have the same parity (since both ranks are even), and hence the coranks of
M, and M, have opposite parity. Q.E.D.

(c) The role of higher order terms in the Pfaffian structure

Suppose that the “Riemann singularity theorem fails” for L € Z, i.e. that Pf(M;),
Mumford’s Pfaffian of the skew-symmetric matrix of linear terms, is identically 0 on the
tangent space T, (P). Then the multiplicity of £ at L is greater than 7h%(L). In [S-V5] it
was shown that there exists a unique line bundle M on C with h%(C, M) > 1h%(L) and
effective divisor B on C with BN B’ = ¢ such that L = 7*(M)(B). We called such a
singular point L € E “very exceptional”, and (M, B) a “Shokurov pair” for L (influenced
by [S, Lemma. 5.7, p. 121]). We noted that multz (Z) > h%(M), and asked whether equality
must hold. Casalaina-Martin [CM)] has recently established the equality and we will just
indicate the interpretation of his result in terms of the skew symmetric matrix M describing
= around L. Take a basis for H°(L) starting with a basis for 7*(H°(M)) and look at the
block form of M. Then

Q | A 0 | A
M= - - | +... and M1= — —
* | & x | K

Here, if we set m = h®(C, M) and n = h%(C, L), then Q is an m x m skew-symmetric block
of quadratic forms, A is an m x (n—m) block of linear forms « is an (n—m) x (n—m) skew-
symmetric block of linear forms, and the dots indicate matrices of appropriate higher order
terms. The matrix Q can be modified by the addition of AF — F*A* for any (n —m) x m
matrix F of linear forms (appearing in the linear part of a change of local trivialization of
the vector bundle A around L). In each row and in each column of A, the linear forms are
linearly independent (by [S-V5, Lemma 2.3 iii)], using the maximality assumption on the
pair (M, B)). '
Now Casalaina-Martin’s result is that the order of the first nonvanishing term in P f(M)
is exactly m = h°(C, M) (> %n, where n = h®(C, L)). As a consequence, whenever Mum-
ford’s homogeneous polynomial Pf(M;) of degree %hO(C’ , L) is identically 0, the homoge-
Q| A

neous polynomial Pf,,(M) = Pf(| — — | ) of larger degree provides the equation for
x | 0

the tangent cone C(Z).

To check this derivation, consider the full expansion formula for det(M) in which each
term is + a product of entries, one from each row and column. For any single product,
consider the entries taken from the last n — m columns and let r be the number of these
entries that lie in the first m rows. Then exactly m — r entries in the product must come
from the upper left block, and the remaining r entries in the product must be chosen from
the lower left block. Therefore the order of such a product is > 1-(n—m)+2-(m—r)+1-7 =
n+m—r, But then n+m —7r = 2m+ (n —m —r) > 2m since obviously r < n —m. Thus
every term in det(M) has order at least 2m and only terms with 7 = n —m can have order

exactly 2m. Thus, the determinant of the matrix [—CJZU 13] (with homogeneous entries
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and lower right block 0) contributes precisely all the homogeneous terms of order exactly
2m in det(M).

Example: the conic bundle structure of a cubic threefold

For a smooth cubic threefold W C P* and a generic line £ C W, consider the conic
bundle structure Bl;W — P? arising from projection of W from the line. Let C C P2
be the quintic discriminant curve and let 7 : C — C be the étale double cover whose
points are the lines occurring in reducible fibres of the conic bundle structure. It is known
that the associated Prym variety has a unique singular point L on its theta divisor and
the cubic threefold W appears as the projectivized tangent cone at this point. (See [M2,
p. 348, [B], cf. [S-V2, §5] and the references there, and also cf. [CM-F].) For the Pfaffian
structure around L,

0 Q @1 =o

M = : S QOO 3| + ... and Pf3(M):$0Q0—$1Q1+:B2Q2
T2
¥ ok * 0

is an equation for the cubic threefold W C P* in a form that displays the conic bun-
dle structure for projection of W from the line £ defined by the vanishing of xo, z1, T2.
This example shows that the local Pfaffian structure is not an invariant of the principally
polarized abelian variety (P, Z) but depends on the étale double cover 7 : C—C.
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