Problem 1. If a and b are real numbers whose average is 10, what is the average of a, b, and 16?

Answer. 12

Solution. Since $\frac{a+b}{2} = 10$, $a + b = 20$, and so $a + b + c = 36$. Dividing by 3 shows that the average is 12.

Problem 2. How many solutions to $x + y = z$ are there if x, y, z are (not necessarily distinct) elements of $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$? Note that $1+2=3$ and $2+1=3$ are different solutions.

Answer. 45

Solution. Given x, the integer y must be one of the $10-x$ numbers $1, 2, 3, \ldots, 10-x$, and then z is determined as $x+y$. So there are $\sum_{x=1}^{10}(10-x) = \sum_{x=0}^{9} x = \frac{9 \cdot 10}{2} = 45$ solutions.

Problem 3. Find a value $x > 1$ so that a 1 by x rectangle can be cut into two congruent rectangles each similar to the original 1 by x rectangle.
Answer. \(\sqrt{2} \) (or \(x = \sqrt{2} \))

Solution. Cut the rectangle in half vertically:

\[\begin{array}{c}
\text{1} \\
\text{x/2} \\
\text{x/2}
\end{array} \]

The similarity condition then requires \(\frac{x/2}{1} = \frac{1}{x} \), so \(x = \sqrt{2} \).

Problem 4. How many subsets of \(\{U, G, A, H, S, M, T\} \) have nonempty intersection with \(\{U, G, A\} \)?

Answer. 112 (sets)

Solution. Our set must be one of the \(2^7 = 128 \) subsets of \(\{U, G, A, H, S, M, T\} \), but not one of the \(2^4 = 16 \) subsets of \(\{H, S, M, T\} \). This leaves \(128 - 16 = 112 \) possibilities.

Problem 5. I got the following message on my phone: “Your screen time was down 37% from last week for an average of 9 minutes/day.” What was my screen time, in minutes, last week?

Answer. 100 (minutes)

Solution. This week my screen time was (only!) \(9 \times 7 = 63 \) minutes. Solving \((1 - .37)x = 63 \),

gives \(x = 100 \), so last week I had 100 minutes of screen time.

Problem 6. Let \(L \) be the line segment in \(\mathbb{R}^2 \) from \((0,0) \) to \((2,0) \). At each point \((x,0) \) of \(L \) draw a disk of radius 1 centered at \((x,0) \). What is the area of the union of these disks? (A disk consists of a circle together with the points inside the circle.)

Answer. \(4 + \pi \)

Solution. Here is a picture of the union of disks:
Notice that it consists of a 2×2 rectangle and 2 half-disks of radius 1, so the area is $4 + \pi$.

Problem 7. What is $\arcsin \left(\frac{\pi}{4} \right) + \arccos \left(\frac{\pi}{4} \right)$?

Answer. $\frac{\pi}{2}$

Solution. Let α and β be the angles in the following triangle:

Then $\alpha = \arcsin \left(\frac{a}{b} \right)$ while $\beta = \arccos \left(\frac{a}{b} \right)$. Since $\alpha + \beta = \frac{\pi}{2}$ for any $0 < a < b$, we find that actually $\arcsin (x) + \arccos (x) = \frac{\pi}{2}$ for any $-1 \leq x \leq 1$.

Problem 8. What is the largest positive integer k for which 3^k divides $\underbrace{999\ldots9}_{2019 \text{ nines}}$?

Answer. 3 (or $k = 3$)

Solution. Let $N = \underbrace{999\ldots9}_{2019 \text{ nines}}$. Clearly, $3^2 = 9 \mid N$, and $N/3^2 = 111\ldots1$. The sum of the digits of $N/3^2$ is 2019, which is a multiple of 3 but not of 9. So by the familiar divisibility rules for 3 and 9, we see that $N/3^2$ is a multiple of 3 but not of 9. Thus, $3^3 \mid N$, while $3^4 \not\mid N$.

Problem 9. Detective Uga comes across a combination lock requiring a 5-digit key-code, with each digit in $\{0, 1, 2, \ldots, 9\}$. Dusting for prints reveals that the combination only uses the digits 2, 0, 1, 9 and only those four digits. How many possible
keycodes use those four digits?

Answer. 240 (combinations)

Solution. Exactly one of the digits 2,0,1,9 occurs twice. There are 4 choices for which one. Having made that choice, there are \(\frac{5!}{2} = 60 \) corresponding ways to permute the digits; here the repeated digit accounts for the division by 2. Thus, there are \(4 \cdot 60 = 240 \) combinations in total.

Problem 10. If \(p(x) \) is a degree 2 polynomial with positive integer coefficients, with \(p(1) = 11 \) and \(p(10) = 236 \), what is \(p(-1) \)?

Answer. 5

Solution. Write \(p(x) = ax^2 + bx + c \) with \(a, b, c \) positive integers. Then \(11 = p(1) = a + b + c \), and so \(a = 11 - b - c \leq 11 - 1 - 1 = 9 \). Similarly, \(b, c \leq 9 \). Since \(a, b, c \in \{1, 2, \ldots, 9\} \), we see that \(p(10) = 100a + 10b + c \) has decimal expansion \(abc \). So \(a = 2, b = 3, c = 6 \), and \(p(-1) = a(-1)^2 + b(-1) + c = a - b + c = 5 \).

Authors. Written by Mo Hendon, Paul Pollack, and Peter Woolfitt.