
Sponsored by: UGA Math Department and UGA Math Club

Written test, 25 problems / 90 minutes
October 20, 2018

WITH SOLUTIONS

Problem 1. If a > 2 and (a− 2)a + (a− 1)a + (a+ 1)a + (a+ 2)a = 2018, what is a?

(A) 3 (B)♥ 4 (C) 5 (D) 6 (E) 7

Solution. If a = 3 then the biggest term in the sum is 53 = 125, so the total sum
is less than 4 × 125 = 500. If a ≥ 5, then the largest term in the sum is at least
75 > 74 = 2401 so the sum is too large. Thus of the answer choices, 4 is the only one
possible, and indeed

24 + 34 + 54 + 64 = 2018.

Problem 2. A certain recipe calls for butter, eggs, sugar, vanilla, and flour. After
the other ingredients are well mixed, the recipe says: “Add 1

3
of the flour and mix

well. Then add 1
2

the remaining flour and mix well. Then add the rest of the flour,
mix well, and bake.”

If “the rest of the flour” is 1 cup, how much flour is in the recipe?

(A) 11
2

cups (B) 12
3

cups (C) 15
6

cups (D) 2 cups (E)♥ 3 cups

Solution. If the recipe calls for n cups of flour, then the first addition is
1

3
n cups,

so there are
2

3
n cups flour remaining. The second addition is

1

2

(
2

3
n

)
=

1

3
n cups,

so now there are
1

3
n cups remaining. “The rest of the flour” is then

1

3
n = 1 cup, so

n = 3 cups.

Problem 3. Each of the following rows contains two functions. For which row(s) are
the graphs of the two functions identical?

I. y = log ((x+ 5)(x2 − 16)), y = log(x+ 5) + log (x2 − 16)



II. y = log ((x+ 5)(x2 − 16)), y = log(x+ 5) + log(x− 4) + log(x+ 4)

III. y = log ((x+ 3)(x2 − 16)), y = log(x+ 3) + log (x2 − 16)

IV. y = log ((x+ 3)(x2 − 16)), y = log(x+ 3) + log(x− 4) + log(x+ 4)

(A)♥ I (B) II (C) III (D) IV (E) The graphs are identical in each row.

Solution. Rules of logarithms state that in each line the two functions are the same
wherever they are both defined. Thus this is really a question of domain.

Recalling that log is only defined on positive numbers, we see that problems may
occur when some of the inner functions above take on negative values. Indeed for II
the left hand function is defined at x = −4.5 while the right hand side is not. For III
and IV the left hand functions are defined at x = −3.5 while the right hand functions
are not.

For I the left hand function is defined whenever (x + 5) (x2 − 16) > 0 which is
when −5 < x < −4 or 4 < x. The right hand side is defined when both x > −5 (from
log(x + 5)) and x < −4 or 4 < x (from log (x2 − 16)). This is exactly the same as
−5 < x < −4 or 4 < x.

Problem 4. 100 students took a test, and their average score was 75 (out of a possible
100). If n is the number of students who scored ≥ 90 what is the largest n can be?

(A) 50 (B) 75 (C) 80 (D)♥ 83 (E) 84

Solution. The hundred students scored a combined 7500 points. Since
7500

90
= 83.3,

there could be as many as 83 scores of 90. That only leaves 30 points unaccounted
for, so the remaining 17 people had an average under 2.

Problem 5. Suppose x1, x2, . . . , xn is a finite data set with

minimum < mean < median < mode < maximum.

What is the smallest n can be?
We use the following definitions: When the data are listed in increasing order, the

median is the middle number in that list, or the average of the two middle numbers.
The mode is the unique data point that occurs most frequently.

(A) 4 (B) 5 (C)♥ 6 (D) 7 (E) there is no such data set

Solution. Any such data set having a mode must contain at least the distinct
numbers m = minimum, M = maximum, and (twice) a = mode. If n = 4 or n = 5,
a is also the median. With n = 6 data points, the result is possible; e.g. the data set
0, 1, 2, 3, 3, 4 has min = 0, mean = 2.16, median = 2.5, mode = 3, and max = 4.



Problem 6. In the diagram shown 0 < θ <
π

4
and the line AC is tangent to the

circle at A. Express
OC

OB
as a function of θ.

O A

B

C

θ
θ

(A)
sec(θ)√

2
(B)

csc(θ)√
2

(C) tan(θ) (D)♥ cot(θ) (E)
π

4θ

Solution. Notice that ∠C = θ (because of transverse angles). Therefore 4OBA is
similar to 4COA. Thus,

OC

OB
=
OA

AB
= cot(θ).

Problem 7. Teacher: Here is the graph of f(x).

−1

−1

1

1

x

y

Teacher: What does the graph of f (x2) look like?
Me:



(A) Top left (B) Top right (C) Bottom left (D)♥ Bottom right

(There are only 4 answer choices for this problem.)

Solution. Notice that if 0 < x < 1, then 0 < x2 < 1, so −1 < f (x2) < 0. This
eliminates the left options. For x near 0, f(x) looks approximately like −x, so f (x2)
will look like −x2, which eliminates the top right.

Problem 8. Suppose xn is a sequence of integers which satisfy the usual Fibonacci
recurrence:

xn+1 = xn + xn−1.

What is the smallest possible value of x1 if x1 is positive and x1 = x10?

(A) 7 (B) 13 (C) 14 (D)♥ 17 (E) 34

Solution. If x1 = y and x2 = x, then the sequence is

y, x, x+ y, 2x+ y, 3x+ 2y, 5x+ 3y, 8x+ 5y, 13x+ 8y, 21x+ 13y, 34x+ 21y,

so we want 34x + 21y = y; i.e.
x

y
= −10

17
. Thus 17 divides y, and y = 17, x = −10

produces the valid solution

17, −10, 7, −3, 4, 1, 5, 6, 11, 17.

Problem 9. A chocolate bar is a rectangle made up of individual square pieces.
You can break a bar into two smaller bars by separating along any row or column



that joins pieces together. For this problem, a break can only affect one bar at a
time; for example you may not stack different bars on top of each other to perform
simultaneous breaks.

If we start with a 3×4 rectangle, what is the minimum number of breaks required
to separate all 12 individual squares?

(A) 8 (B) 9 (C) 10 (D)♥ 11 (E) 12

Solution. For each new break performed, the total number of sub-bars increases by
1. Therefore, to go from the whole bar to 12 individual 1-piece bars, you must use
11 breaks.

Problem 10. For this problem, we want to break a chocolate bar into individual
pieces, but we can stack different bars on top of each other to break multiple bars
simultaneously. With that change to the rules, what is the minimum number of
breaks needed to completely separate a 3× 4 bar?

(A) 3 (B)♥ 4 (C) 5 (D) 6 (E) 7

Solution. For a general m×n bar, where we (without loss of generality) break up the

columns, at least one sub-bar will have ≥ n

2
columns. Therefore, when we perform

b total column breaks, there must be a piece with at least
n

2b
columns, and thus you

need at least dlog2(n)e breaks to separate all the columns. Similarly, you need at
least dlog2(m)e breaks to separate all the rows, so the sum of these ceilings is a lower
bound on the problem. For the 3× 4 bar, that bound is 2 + 2 = 4.

Indeed 4 is attainable: first do a break down the middle to get two 3 × 2 bars,
then stack them and break them in the middle to get four 3× 1 bars, and then stack
those four on each other and perform two breaks through each simultaneously.

Problem 11. The circle shown has radius 1 and center (1, 1). What is the length of
the shortest path from (0, 0) to P = (2, 1 +

√
3) that does not go inside the circle.

The path may touch the circle.



1

1

(0, 0)

P

(A) 1 +
π

2
+
√

3 (B)♥ 1 +
π

3
+
√

3 (C) 1 +
π

4
+
√

3

(D) 1 +
π

6
+
√

3 (E) 1 +
π

2
+
√

5− 2
√

3

Solution. There are two reasonable candidates for shortest path:

1

1

(0, 0)

(2, 1)

B

C

θ

P

1. (0, 0)→ (1, 0)→ (2, 1)→ P

2. (0, 0)→ (0, 1)→ B → P where B is the other point on the circle whose tangent
line goes through P .

Notice that the first and last steps in each path have the same length. Thus the path
through B is the shortest because it travels around less of the circle. To find this
distance, notice that4CPB is a right triangle with hypotenuse CP = 2 and CB = 1,

so θ =
π

3
. By symmetry, the angle at C in the triangle formed by (2, 1), C, and P

is also θ, so the angle through which the path turns is π − 2θ =
π

3
, and the distance

traveled around the circle is also
π

3
. Adding this to the distance from (0, 0)→ (0, 1)



and the distance from B → P (which is conveniently the same as the distance from

(2, 1)→ P ) gives a total distance of 1 +
π

3
+
√

3.

Problem 12. How many ordered pairs (x, y) of distinct positive integers satisfy

1

x
+

1

y
=

1

2018
?

(A) 0 (B) 4 (C)♥ 8 (D) 16 (E) 20

Solution. We first count the number of such pairs ignoring the condition that x 6= y.
It is clear that if x, y satisfy the given equation, then x, y > 2018. Now multiplying
through by 2018xy and rearranging shows that we are looking for the number of pairs
of positive integers x, y > 2018 satisfying

(x− 2018)(y − 2018) = 20182.

But this is just the number of positive integer divisors of 20182. Factoring 20182 into
primes yields 22 · 10092, and this has 9 positive divisors: 2a · 1009b for 0 ≤ a, b ≤ 2.
So there are 9 ordered pairs of x, y satisfying our equation. Removing the pair x =
y = 2 · 2018 leaves 8 pairs with x, y distinct.

Problem 13. Suppose you’re going to choose an integer from 1 to 100, inclusive,
and that for each k = 1, 2, . . . , 100, you are k times as likely to choose the number k
as you are to choose the number 1. What is the expected value of your choice?

(A) 50 (B) 66.6 (C)♥ 67 (D) 75 (E) 80

Solution. For 1 ≤ k ≤ 100, let pk be the probability that you pick k. Then pk = kp1,
and

1 =
100∑
1

pk =
100∑
1

kp1 = p1
100 · 101

2
,

so p1 =
2

100 · 101
. The expected value is then

100∑
1

kpk =
100∑
1

k2p1 =
2

100 · 101
· 100 · 101 · 201

6
=

201

3
= 67.

Problem 14. Call a composite number obviously composite if it is divisible by 2, 3,
or 5. How many composite numbers are there in the interval [2, 1000] that are not
obviously composite? You may find helpful that the interval [2, 1000] contains 168
prime numbers.



(A) 97 (B)♥ 100 (C) 222 (D) 266 (E) 267

Solution. Applying the principle of inclusion-exclusion, we find that the number of
integers in [2, 1000] that are divisible by at least one of 2, 3, or 5 is

[1000/2] + [1000/3] + [1000/5]− [1000/6]− [1000/10]− [1000/15] + [1000/30] =

500 + 333 + 200− 166− 100− 66 + 33 = 734.

Of these 734 numbers, 731 of them are composite (we must remove the three primes
2, 3, and 5 from the count). Since there are a total of 999− 168 = 831 composites in
the interval [2, 1000], the number of nonobvious composites there is 831− 731 = 100.

Problem 15. A circle of radius 1 has three congruent mu-
tually tangent circles inscribed in it as shown. What is the
radius r of the inscribed circles?

(A)
1

3
(B) 2−

√
3 (C)

√
2− 1 (D)♥ 2

√
3− 3 (E) 3− 2

√
2

Solution. Notice the centers of the circles form an equilateral triangle. Therefore
the triangle drawn below is a 30-60-90 right triangle.

If r is the radius of an inscribed circle, then by the properties of 30-60-90 right
triangles, the distance from the center of an inscribed circle to the center of the radius

1 circle is
2r√

3
. Therefore we have the equation

r +
2r√

3
= 1.

Rearranging this equation gives

r =

√
3

2 +
√

3
=

√
3

2 +
√

3
× 2−

√
3

2−
√

3
= 2
√

3− 3.



Alternatively, Descartes’ Circle Theorem says (if R is the radius of the outer circle
and r1, r2, r3 the radii of the inscribed circles)(

1

r1
+

1

r2
+

1

r3
− 1

R

)2

= 2

(
1

r21
+

1

r22
+

1

r23
+

1

R2

)
.

Problem 16. If A, B, and C are the side lengths shown in the diagram, which of
the following is true?

A

C

B

(A) A+ C = 4B (B) AC = 4B2 (C) A2 + C2 = 4B2

(D)♥
1

A
+

1

C
=

1

B
(E)

AB

2
+
BC

2
= AC

Solution. First we write the auxiliary lengths x and y as shown below.

A

C

B

x y

By similar triangles:
B

A
=

y

x+ y
,

and
B

C
=

x

x+ y
.

Adding these equations, we get

B

(
1

A
+

1

C

)
=

y

x+ y
+

x

x+ y
=
x+ y

x+ y
= 1,



and rearranging gives the answer.

Remark. Notice that if we fix A and let C →∞, then B → A, which eliminates all

choices but the answer. As an interesting application, notice that A =
1

2
and C = 1

implies B =
1

3
. It’s easy to see how to fold a piece of paper in half; this shows how

to fold a piece of paper into thirds:

1
2

1

1
3

Problem 17. Call a prime deletable if it remains prime upon deletion of any proper
subset of its (base 10) digits. How many deletable primes exist? Note: A proper
subset means a subset that is not the entire set.

(A) 7 (B)♥ 8 (C) 9 (D) 10 (E) 12

Solution. We make several observations:

• We can always remove digits so that there is only a single digit left. Therefore
all the digits themselves better be primes, i.e. the digits come from the set
{2, 3, 5, 7}.

• We cannot abide repeated digits as deleting down to two repeated digits yields
a number divisible by 11.

• If a deletable prime contains a 2 or 5, then that 2 or 5 must appear at the
beginning of the prime (otherwise we could delete down to a two digit number
ending in 2 or 5). In particular a deletable prime cannot have both a 2 and a 5.

• Consideration modulo 3 tells us a deletable prime cannot have a 7 with a 2 or
a 5 (that is any two digit number with those digits is divisible by 3).

• Therefore if a deletable prime has a 7, it can have at most 2 digits. On the
other hand, if it does not contain a 7, then it can also have at most two digits
because it cannot contain both 2 and 5.



• We have reduced to checking all two digit numbers which fit our constraints:
If the deletable prime has a 7, then it cannot have a 2 or 5, so we have two
possibilities: 37 and 73, both valid. If it does not contain a 7, then it must
start with 2 or 5 and end in 3, giving 23 and 53 both of which are also valid.
Adding these four solutions to the single digit primes which are automatically
valid gives 8 deletable primes.

Problem 18. In the 8 by 8 grid below two points A and B are marked. If point C
is one of the other points in the grid, how many choices of C make the triangle ABC
acute (i.e. every angle less than 90 degrees)?

A

B

(A) 8 (B)♥ 14 (C) 18 (D) 20 (E) 30

Solution. If ABC is acute, then each angle needs to be less than 90◦. In order for
both ∠A and ∠B to be less than 90◦, C has to lie in the strip between A and B
(i.e. between the lines perpendicular to segment AB). In order for ∠C to be acute,
it needs to lie outside the circle through A and B with center directly between A
and B (recall any point on that circle will form a right triangle with A and B). The
remaining region shaded below contains 14 points.

A

B



Problem 19. What is the largest prime p such that p2 divides the binomial coefficient(
100

50

)
?

(A)♥ 3 (B) 7 (C) 19 (D) 31 (E) 47

Solution. For any prime p the largest power of p that divides n! is⌊
n

p

⌋
+

⌊
n

p2

⌋
+

⌊
n

p3

⌋
+ . . . . (∗)

Thus if p2 > 100 then the power of p which divides

(
100

50

)
=

100!

50! 50!
is⌊

100

p

⌋
− 2

⌊
50

p

⌋
.

For any x note that
x

p
− 1 <

⌊
x

p

⌋
≤ x

p
. Hence⌊

100

p

⌋
− 2

⌊
50

p

⌋
<

100

p
− 2

(
50

p
− 1

)
= 2.

Therefore if p2 divides

(
100

50

)
, then p ≤ 10. Using (∗) we can explicitly check the

primes 7, 5, and 3 in order, finding that 7 and 5 do not divide

(
100

50

)
while in fact

not just 32 but rather 34 does divide it.

Problem 20. We define a magic square to be a collection of nine entries in a 3 × 3
grid such that the three numbers in each row, column, and diagonal add up to be
the same value. If you have a magic square and you know the first two entries in the
middle row are 3 and 21 as shown, what is the third entry in that row?

3 21 ?

(A) 3 (B) 8 (C) 23 (D)♥ 39 (E) there is more than one possibility

Solution. Let S be the magic sum, the value to which all the entries of each row,
column, and diagonal add up. Let c be the center value in the magic square. Then

4S = = + 3c = 3S + 3c,



so S = 3c. In our case c = 21, so S = 63. Thus

? = 63− 21− 3 = 39.

Technically we have not yet shown the existence of a solution. There are many
solutions, but here is one with some symmetry:

30 21 12

3 21 39

30 21 12

Problem 21. A polynomial f(x) of degree 4, with real number coefficients, has the
property that f(n) is an integer whenever n is an integer. Write

f(x) = a4x
4 + a3x

3 + a2x
2 + a1x+ a0.

If 0 ≤ a3 ≤ 1, then how many possible values are there for a3?

(A) 1 (B) 2 (C) 6 (D) 7 (E)♥ 13

Solution. Call a polynomial integer-valued if it takes integer values at all integer
inputs. For each nonnegative integer k, define the polynomial

(
x
k

)
as follows:(

x

k

)
=
x(x− 1) · · · (x− k + 1)

k!
.

When k = 0, the product in the numerator is empty, and we understand
(
x
0

)
to be

equal to 1. It is clear that
(
x
k

)
always has rational number coefficients. Moreover,(

x
k

)
is integer-valued. To see why the last statement is true, note first that if n

is a nonnegative integer, then
(
x
k

)∣∣
x=n

=
(
n
k

)
, where the right-hand side is the usual

binomial coefficient. But binomial coefficients are obviously integers (since they count
something). It follows that for all nonnegative integers n, the integer n(n−1) · · · (n−
k + 1) is always a multiple of k!. But the value of n(n− 1) · · · (n− k + 1) modulo k!
depends only on n modulo k! — so if it is 0 for all nonnegative integers n, it is in fact
0 for all integers n. Thus,

(
x
k

)∣∣
x=n

is an integer for all integers n. As a consequence,
for any finite sequence of integers a0, a1, . . . , ak, the polynomial

a0

(
x

0

)
+ a1

(
x

1

)
+ · · ·+ ak

(
x

k

)
is an integer-valued polynomial.



Claim: Every integer valued polynomial has the form just described.

Indeed, let f(x) be an integer valued polynomial of degree d. We can choose
constants c0, c1, . . . , cd with

f(x) = c0 + c1

(
x

1

)
+ · · ·+ cd

(
x

d

)
.

(First choose cd to make the coefficients of xd match, then cd−1 to match up the
coefficients of xd−1, etc.) To prove the claim, it is enough to show that all of c0, . . . , cd
are integers. Plugging in x = 0 shows c0 is an integer, since c0 = f(0) and f is
integer-valued. Now plugging in x = 1 shows that c1 + c0 is an integer; since c0 is
already known to be an integer, we find that c1 is also an integer. Continuing in this
way, plugging in x = 2, . . . , d, we find that all of c0, c1, . . . , cd are integers, as desired.

Getting back to the original problem, we see that f being integer-valued of degree
4 amounts to saying

f(x) = c0 + c1

(
x

1

)
+ c2

(
x

2

)
+ c3

(
x

3

)
+ c4

(
x

4

)
,

where the ci are integers and c4 6= 0. Expanding, the coefficient of x3 in f(x) has the
form

−3c4 + 2c3
12

.

If this is between 0 and 1 (inclusive), it is obviously one of the numbers a/12 for
a = 0, . . . , 12. Moreover, all of these are possible for some choice of the ci. (To get
a = 0, take c4 = 2, c3 = 3. To get any other a, take c4 = c3 = −a.) So there are 13
possible values for the coefficient of x3.

Problem 22. If x+
1

x
= 3, what is x12 +

1

x12
?

(A)♥ 103682 (B) 103729 (C) 103822 (D) 103823 (E) 104974

Solution. It is possible to solve this problem by first solving for x in the first
equation and plugging the result into the second equation. It is also possible to
solve the problem by raising the first equation to the 12th power and reducing the

problem to computing xn +
1

xn
for even values of n less than 12. However, both

of these methods are extremely painful computationally. Below we will outline two
computation methods which are not nearly so awful.

First for convenience we will make the definition

Xn := xn + x−n.

Note with this definition X0 = 2, and the original question can be written as: If
X1 = 3, what is X12?



Notice that

XnXm = xn+m + xn−m + xm−n + x−n−m = Xn+m +Xn−m. (1)

In particular if n = m, this tells us

X2
n = X2n + 2. (2)

Together with (1), this suggests two possible paths of computation:

X1 → X2 → X3 → X6 → X12 or X1 → X2 → X4 → X8 → X12.

Using (2) we can compute X2 = X2
1 − 2 = 32 − 2 = 7 (as you may have done on the

ciphering).
Now for the first path, using (1) with n = 2, m = 1 compute

X3 = X2X1 −X1 = 7× 3− 3 = 18.

Using (2) again we compute

X6 = X2
3 − 2 = 182 − 2 = 324− 2 = 322.

Finally using (2) one last time we compute

X12 = X2
6 − 2 = 3222 − 2 = 103682.

Alternatively, (for the second path) by (1) with n = 8 and m = 4, we can write

X12 = X8X4 −X4 = (X8 − 1)X4,

so we can reduce the question to computing X4 and X8, which is possible directly
with (2):

X4 = X2
2 − 2 = 72 − 2 = 47,

X8 = X2
4 − 2 = 472 − 2 = 2207,

and thus we again get

X12 = (X8 − 1)X4 = 2206× 47 = 103682.

Problem 23. The UGA MathClub is proud to announce it has its own cryptarith-
metic puzzle:

U GA
+ H SMT
MAT H



A cryptarithmetic puzzle is an arithmetic problem, as above, where each letter rep-
resents a single digit (0 - 9). Each occurrence of the same letter must represent the
same digit; different letters represent different digits. Also, there are no leading 0’s.

If, in the puzzle above, A = 7, what is M?

(A) 1 or 2 (B)♥ 3 or 4 (C) 5 or 6 (D) 7 or 8 (E) 9 or 0

Solution. Some observations in order:

• Since H 6= M , we must have M = H + 1 and U + S must result in a carry.

• Since A = 7, we must have U +S = 16 with a carry from the second column, or
U +S = 17 without a carry. The first of these would require {U, S} = {7, 9} or
{U, S} = {8, 8}, neither of which is possible. So U+S = 17 and {U, S} = {8, 9}.
So far we have

8G 7
+ H 9MT
M7T H

(where the 8 and 9 are possibly reversed).

• Next, looking at the ones column, notice that T ≤ 2 implies H ≥ 7, but 7, 8,
and 9 are already used.

• Also notice T = 3 implies H = 0, but this is impossible since HSMT would
begin with 0.

• So T can only be 4, 5, or 6.

• So H can only be 1, 2, or 3.

• So M can only be 2, 3, or 4.

Let’s check M = 2:

8G7
+ 19 2 4

27 4 1

This would require G = 1, which is not possible. Thus M must be 3 or 4, and in fact
both are possible:

817
+ 2935

3752

817
+ 3946

4763



Problem 24. Suppose

3

√
a

b
=

3
√

3 +
(

3
3
√

2− 3
) 2

3
,

where
a

b
is a rational number in lowest terms. What is a+ b?

(A)♥ 13 (B) 29 (C) 31 (D) 42 (E) 52

Solution. Let x = 3
√

2. Then

(2− x)3 = 8− 12x+ 6x2 − x3 = 8− 12x+ 6x2 − 2 = 6(x− 1)2.

Thus
2− x

3
√

6
= (x− 1)

2
3 .

Writing 2 as 3
√

8 and x = 3
√

2 gives

3

√
4

3
− 3

√
1

3
=
(

3
√

2− 1
) 2

3
.

Multiplying through by 3
√

9, we get

3
√

12− 3
√

3 =
(

3
3
√

2− 3
) 2

3
,

so
a

b
=

12

1
and the answer is 12 + 1 = 13.

Problem 25. In the rectangle shown at right the three
border triangles have areas 2, 3, and 4 as shown (though
the figure is certainly not drawn to scale). What is the area
of the shaded central triangle?

32

4

(A) 5 (B) 6 (C)♥ 7 (D) 8 (E) 9

Solution. Calling the length x and the height y, we can draw in some edge lengths
using the A = 1

2
bh formula for a triangle:



32

4

y

x

4

y

8

x

x− 4

y

y − 8

x

Now we have a relation from the upper right triangle, namely

3 =
1

2

(
x− 4

y

)(
y − 8

x

)
.

Multiplying through by 2 and expanding gives

6 = xy − 4− 8 +
32

xy
.

Multiplying through by xy yields a quadratic equation in xy:

0 = (xy)2 − 18xy + 32 = (xy − 16)(xy − 2).

Therefore xy = 2 or xy = 16. However, we can recognize xy as the area of the
rectangle, so xy = 2 is an extraneous solution and the true area of the rectangle is
16. Thus the area of the shaded triangle is 16− 2− 3− 4 = 7.
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