Carl F. Kossack Calculus Prize Examination April 3, 2017

Name:

Instructions

- This test has eight problems, and you have two hours to complete it.
- Fill out your answers in the blank space provided. You may use the back sides of pages.
- No aid of any kind is allowed. Calculators are not allowed.
- Show your work, and give clear reasoning.

Good luck! The questions start on the next page.

Grading

Problem \#	Points	Score Earned
1	10	
2	10	
3	10	
4	15	
5	10	
6	15	
7	15	
8	15	
Total	100	

Problem 1 (10 points)

An airplane at an altitude of 6400 feet is flying horizontally away from an observer on the ground. At the instant when the angle of elevation is 45° the angle is decreasing at a rate of 0.05 radians/sec. What is the speed of the airplane at that instant?

Problem 2 (10 points)

Find the point on the curve

$$
x y-\frac{y^{2}}{2}=x^{3}
$$

which is not $(0,0)$ where the graph has a vertical tangent.

Problem 3 (10 points)

Find

$$
\lim _{x \rightarrow \infty}\left(\frac{1}{\sqrt{x^{2}+2 x}-\sqrt{x^{2}-x}}\right)
$$

Problem 4 (15 points)

Is the quantity $\frac{e}{3} \cdot \ln (3)$ greater than, less than, or equal to 1 ? Prove your answer.

Problem 5 (10 points)

Let

$$
f(x)= \begin{cases}|x|^{3 / 2} \sin (1 / x), & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

Use the definition of the derivative to compute $f^{\prime}(0)$, and explain your steps.

Problem 6 (15 points)

Suppose $f(x)$ has a continuous second derivative, and it intersects the line $y=m x+b$ at three points. Prove that $f^{\prime \prime}(c)=0$ for some c.

HINT: Use the Mean Value Theorem multiple times.

Problem 7 (15 points)

A three dimensional solid is produced by rotating the region bounded by $y=x e^{x}$, the x axis, and $x=2$ about the line $x=-1$. Determine the resulting volume.

Problem 8 (15 points)

What are the dimensions of a right circular cone with maximum volume that can be inscribed in a sphere of radius R ?

