1. If \(\{X_n\} \) are iid random variables with \(P(X_1 = 0) < 1 \) and \(S_n = X_1 + X_2 + \cdots + X_n \), then for every \(c > 0 \), there exists an integer \(n_0 \) such that \(P(|S_n| > c) > 0 \).

2. (a) Given a random variable \(X \) with finite mean square. Let \(\mathcal{D} \) be a \(\sigma \)-algebra. Show that \(E[X|\mathcal{D}] \) is the minimizer of \(E(X - \xi)^2 \) over all \(\mathcal{D} \)-measurable r.v.s \(\xi \), i.e.,

\[
E(X - E[X|\mathcal{D}])^2 \leq E(X - \xi)^2
\]

for all \(\mathcal{D} \)-measurable r.v.s \(\xi \).

(b) Let \((\Omega, \mathcal{F}, P)\) denote a probability space. Suppose \(f : \mathbb{R}^n \times \Omega \to \mathbb{R} \) is a bounded \(\mathcal{B}(\mathbb{R}^n) \times \mathcal{C} \) measurable function and \(X \) be a \(n \)-dimensional \(\mathcal{D} \) measurable random variable. Assume \(\mathcal{C} \) and \(\mathcal{D} \) are independent. If \(g(x) := E[f(x, \omega)] \), then

\[
g(X) = E[f(X, \omega)|\mathcal{D}], \text{ a.s.}
\]

3. Show that random variables \(X_n, n \geq 1 \), and \(X \) satisfy \(X_n \to X \) in distribution iff

\[
E[F(X_n)] \to E[F(X)]
\]

for every continuous distribution function \(F \).

4. Let \(\{X_n\} \) be a sequence of iid random variables with \(E|X_1| = \infty \). Let \(S_n = X_1 + X_2 + \cdots + X_n \). Show that

\[
P \left(\limsup_n \frac{|S_n|}{n} = \infty \right) = 1.
\]

5. Let \(\{X_n\} \) be a sequence of iid random variables with \(EX_1 = 0 \). Prove that (a) the sequence \(\{\frac{S_n}{n}\} \) is uniformly integrable; (b) \(\frac{|S_n|}{n} \to 0 \).

6. Let \(\{X_n\} \) be iid r.v.s with distribution \(F(x) \) having finite mean \(\mu \) and variance \(\sigma^2 > 0 \). Let \(S_n = X_1 + \cdots + X_n \). Show that

\[
\frac{S_n - n\mu}{\sigma\sqrt{n}} \to N(0,1) \text{ in distribution as } n \to \infty.
\]

Here \(N(0,1) \) is a standard normal random variable.

7. Let \(X_1, X_2, \ldots \) be a sequence of independent r.v.s with \(EX_i = 0 \). Let \(S_n = X_1 + X_2 + \cdots + X_n \) and \(\mathcal{F}_n = \sigma\{X_1, \ldots, X_n\} \). Show that \(\phi(S_n) \) is an \(\mathcal{F}_n \)-submartingale for any convex \(\phi \) provided that \(E[|\phi(S_n)|] < \infty \) for all \(n \).