Real Analysis Preliminary Examination

September 1991

Instructions: Do all of the problems 1 - 4 and do any four of the problems 5 - 9.

1. Let
$$f(0,0) = 0$$
 and $f(x,y) = \frac{xy}{x^2 + y^2}$ if $(x,y) \neq (0,0)$.

- a) Show that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist at (x, y) = (0, 0).
- b) Is f differentiable at (0,0)?

2. Let
$$F: \mathbb{R}^5 \to \mathbb{R}^2$$
 be given by
$$F(x_1, x_2, y_1, y_2, y_3) = (2e^{x_1} y_1 - y_3^2, x_2 \cos x_1 - 5x_1 + y_2^2 - y_3).$$

a) Show that there is a function

g:
$$N \longrightarrow \mathbb{R}^2$$
,

where $N \subset \mathbb{R}^3$ is a neighborhood of (2, -1, 2), such that

$$g(2, -1, 2) = (0, 1)$$

and

$$F(g(\bar{y}), \bar{y}) = 0$$
 for all $\bar{y} \in \mathcal{N}$.

- b) Compute g'(2, -1, 2).
- 3. a) Show that the sequence

$$f_n(x) = \frac{x}{1 + nx^2}, n = 1, 2, 3, ...$$

converges uniformly to a function f(x) on R.

b) Is it true that $\lim_{n\to\infty} f'_n(x) = f'(x)$ for all $x \in \mathbb{R}$?

4. Let $\{f_n\}$ be a sequence of measurable functions on R. Show that the set $A = \{x \in R | \lim_{n \to \infty} f_n(x) \text{ exists} \}$

is a measurable set.

5. Let (X, \mathcal{M}, μ) be a σ -finite measure space and $f: X \to \mathbb{R}$ a non-negative measurable function. Let

$$A = \{(x, t) \in X \times R \mid 0 \le t \le f(x)\}.$$

Prove A is measurable with respect to the product measurer $\mu \times \lambda$ on $X \times R$ (λ is Lebesgue measure on R), and that

$$\mu \times \lambda(A) = \int_{X} f d\mu.$$

6. Let N denote the natural numbers {0, 1, 2, ...} and F the σ-algebra of all subsets of N. For a non-negative sequence b = {b₀, b₁, b₂, ...}, define a measure on F by

$$\mu_b(E) = \sum_{n \in E} b_n$$
 for $E \in \mathcal{F}$.

If $c = \{c_0, c_1, c_2, \dots\}$ is another non-negative sequence, characterize when μ_c is absolutely continuous with respect to μ_b and find $d\mu_c/d\mu_b$ in this case.

- 7. Give an outline of how the Fourier Transform is defined as a map from $L^2(\mathbb{R})$ to $L^2(\mathbb{R})$.
- a) Let H be a complex Hilbert space and V ⊂ H a closed proper subspace.
 Show there exists w ∈ V \(\frac{1}{2} \) with w ≠ 0.
 - b) Use part a) to prove that if $\ell: H \to C$ is a complex continuous linear functional on H, then there is a vector $v \in H$ such that $\ell(x) = \langle x, v \rangle$ for all $x \in H$.
- 9. State and prove the closed graph theorem.