## Ph.D. Preliminary Examination Real Analysis

Do any 8 problems.

The space L<sup>p</sup> refers to the space of Lebesgue measurable functions on [0, 1] satisfying

$$\int_0^1 |f(x)|^p dx < \infty.$$

Show that the series 1.

$$\sum_{n=0}^{\infty} \sin\left(\frac{x}{2^n}\right)$$

converges uniformly on [-1, 1] to a differentiable function f(x) with f'(0) = 2.

Let 2.

$$\alpha(x) = \begin{cases} 0 & 0 \le x < 1 \\ x^2 & 1 < x \le 2 \end{cases}.$$

Compute

$$\int_0^2 x \ d\alpha(x) \ .$$

- Give an example of a subset of R which is not an  $F_{\sigma}$ . Prove your assertions. 3.
- Determine the values of p  $(0 such that <math>t^{-2} \sin t \in L^p$ . Give proofs. 4.
- Let  $f_n(t) = t^{d+1/n}$ . 5.
  - Prove that  $\{f_n\}$  converges in  $L^1$  as  $n \to \infty$ , if d > -1.
  - Prove that  $\{f_n\}$  converges uniformly on [0, 1] if and only if d > 0. b)
- Suppose f(t) is a measurable function on [0, 1],  $1 , and <math>t^d \cdot f(t) \in L^p$ , for every d > 0. Prove that  $f(t) \in L^p$  if and only if there is a constant c such that

$$\int |t^d f(t)|^p dt \le c$$

for all d > 0.

If m is a positive measure and E1, E2, ... are measurable sets satisfying

Real

- 8. If  $f(t) \in L^1$ , show that  $\int_0^1 f(t) (t-s)^{-1/2} dt \in L^1$ for almost all  $s \in [0, 1]$ .
- Suppose M is a closed subspace of L<sup>∞</sup> such that every f ∈ M is continuous on some open interval I<sub>f</sub> containing 1/2. Prove that there is an interval (1/2 ε, 1/2 + ε) on which every f ∈ M is continuous.
- 10. Define a map T:  $L^2 \to L^2$  by Tf =  $\varphi$ f, where  $\varphi \in L^{\infty}$ . Prove that T maps  $L^2$  onto  $L^2$  if and only if  $1/\varphi \in L^{\infty}$ .