Real Analysis Preliminary Examination — September 1996

Work three problems from each Section. All functions are real-valued. Unless specified otherwise, integrals are to be taken with respect to Lebesgue measure, denoted m.

Section A

- 1. Suppose A and B and non-empty subsets of \mathbb{R} satisfying $x \leq y$ for all $x \in A$ and $y \in B$. Prove that $\sup A \leq \inf B$.
- 2. Suppose the sequence $\{f_n\}_{n\in\mathbb{N}}$ in C[0,1] converges uniformly to a function g. Prove that the family $\{f_n:n\in\mathbb{N}\}$ is equicontinuous.
- 3. State and prove a version of the chain rule for functions mapping \mathbb{R}^n into itself.
- 4. Suppose $f: \mathbb{R} \to \mathbb{R}$ is bounded, but not necessarily measurable and define $g: \mathbb{R} \to \mathbb{R}$ by $g(x) = \limsup_{y \to x} f(y)$. Prove that g is Lebesgue measurable.

Section B

- 1. Suppose $f: \mathbb{R} \to \mathbb{R}$ is Lebesgue measurable with $\int (1+x^2)|f(x)|dm(x) < \infty$. Define $F: \mathbb{R} \to \mathbb{R}$ by $F(t) = \int f(x)ln(1+t^2x^2)dm(x)$. Prove that F is well-defined and differentiable and find a formula for F'.
- 2. Prove that if $f, g \in L^2(m)$, then their convolution f * g is uniformly continuous on \mathbb{R} .
- 3. Suppose μ and ν are finite measures on the same measurable space (X, \mathcal{B}) . Prove that the following are equivalent.
 - (i) ν is absolutely continuous with respect to μ .
 - (ii) For each $\epsilon > 0$ there is a $\delta > 0$ such that $\nu(E) < \epsilon$ whenever $\mu(E) < \delta$.
- 4. Equip X = Y = [0,1] with the σ -algebra of Borel sets and the two measures $\mu = m = \text{Lebesgue}$ measure and $\nu = \text{counting measure}$. Prove that $(\mu \times \nu)\Delta = \infty$ where $\Delta = \{(x,y) \in [0,1] \times [0,1] : x = y\}$. Then explain the relevance of this example to the Fubini and Tonelli Theorems.

Section C

- 1. Define a linear functional ϕ on C[0,1] by $\phi(f)=3f(1)-2f(0)+\int_0^1 fdm$. Compute the norm of ϕ and justify your answer.
- 2. Show that if the dual X^* of a Banach space X is separable, then X is also separable.
- 3. Suppose M, N are closed subspaces of a Banach space X with M + N = X and $M \cap N = \emptyset$. Prove that there is a constant C such that $||x + y|| \ge C||x||$ for all $x \in M$, $y \in N$.
- 4. Suppose $\{f_n\} \subset C[0,1]$ with $\sup \int |f_n| = \infty$. Prove that there is a function $g \in L^{\infty}[0,1]$ satisfying $\sup \int f_n g dm = \infty$.