REAL ANALYSIS PRELIMINARY EXAM, FALL 1997

1. a) Show that the locus

$$2x + y + z + \sin z = 0$$

is the graph of a smooth function z = f(x, y) in the neighborhood of the origin in \mathbb{R}^3 .

- **b)** Compute $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at (0,0).
- 2. Let \mathcal{F} be a family of continuous nonnegative functions on a metric space X. Show that the nonnegative function

$$F(x) := \inf\{f(x) : f \in \mathcal{F}\}\$$

is upper semicontinuous, i.e. $F^{-1}[0,b)$ is open for every b>0.

- 3. Let $E = \{x_1, x_2, \dots\} \subset [0, 1]$ be countably infinite. Let $a_1, a_2, \dots > 0$ with $\sum_i a_i < \infty$.
- a) Prove that

$$f(x) := \sum \{a_i : x_i \leq x\}$$

is right continuous everywhere in [0,1], and that the set of discontinuities of f is precisely E.

- **b)** Prove that the range of f is a nowhere dense subset of \mathbb{R} .
- **4.a)** Give an example of a sequence of nonnegative measurable functions $f_n:[0,1]\to\mathbb{R}$ with $f_n\to 0$ pointwise but $\int_0^1 f_n\to 1$.
- b) Is there a sequence of nonnegative measurable functions on [0,1] with $f_n \to 1$ pointwise and $\limsup \int_0^1 f_n < 1$? What if the nonnegativity condition is removed?
 - **5.** Prove that if $E \subset [0,1]$ is a measurable set then

$$\lim_{n\to\infty}\int_E \sin^2 nx\,dx = \frac{1}{2}m(E).$$

(Hint: prove it first under the stronger assumption that E is open.)

- 6. Let $E \subset [0,1]^2$ be Lebesgue measurable. Prove that there is a sequence y_1, y_2, \ldots such that $F := \bigcup_i \{x \in \mathbb{R} : (x, y_i) \in E\} \times \mathbb{R}$ includes almost all of E, in the sense that E F has measure zero in $[0,1]^2$.
- 7. Let X be a normed linear space (not necessarily complete) and X^* its dual space (i.e. the space of all bounded linear functionals on X).
- a) Define the dual norm $||\cdot||_*$ on X^* and show that X^* is complete under this norm.
- **b)** Suppose $v_1, v_2, \dots \in X^*$ converge to $v \in X^*$ in the weak* topology. Show that $||v||_* \leq \liminf ||v_i||_*$.

- 8. a) State the closed graph theorem.
- b) Give an example of a normed vector space X and a linear functional λ on X such that the graph of λ is a closed subspace of $X \oplus \mathbb{R}$, but λ is not continuous.
- 9. Let (X,μ) be a σ -finite measure space with $\mu(X)=\infty$. Show that, for every $p\in[0,\infty]$, there is an isometry of l^p into $L^p(X,\mu)$.