Real Analysis Preliminary Exam, August 2th, 1999

- 1. Prove that every real-valued continuous function on $[0, \pi]$ can be uniformly approximated with trigonometric polynomials of the form $a_0 + a_1 \cos(x) + b_1 \sin(x) + ... + a_n \cos(nx) + b_n \sin(nx)$, $a_i, b_i \in \mathbb{R}$. Also, prove the same fact for real-valued continuous functions f on $[-\pi, \pi]$ for which $f(-\pi) = f(\pi)$.
- 2. Let $S_n(x) := \sum_{k=1}^n \frac{\sin(kx)}{k^2}$ for $x \in [0, 2\pi]$, $n \ge 1$. Show that the following limit exists for every Lebesgue integrable function f on $[0, 2\pi]$:

$$\lim_{n\to\infty}\int_0^{2\pi}S_n(x)f(x)dx.$$

- 3. Let $\varphi(x) = 2x x^2$, $x \in \mathbb{R}$. For every Lebesgue measurable set $E \subset \mathbb{R}$ let $\mu_{\varphi}(E) = \mu(\varphi^{-1}(E))$, where μ is the Lebesgue measure. Show that μ_{φ} is a measure which is absolutely continuous with respect to μ and compute the Radon-Nikodym derivative of μ_{φ} with respect to μ .
- 4. Let A and B be measurable subsets of the reals and let μ be the Lebesgue measure. Suppose that $0 < \mu(A), \mu(B) < \infty$. Prove the identity

$$\int_{\mathbb{R}} \int_{\mathbb{R}} \chi_B(t) \chi_{A+x}(t) d\mu(t) d\mu(x) = \mu(A) \mu(B),$$

and show that there exists an x_0 such that $\mu(B \cap (A + x_0)) > 0$.

- 5. Give an example of a map which is continuous at all the points of the Cantor set and discontinuous at all the other points in [0, 1].
- 6. If f is a differentiable mapping of a convex open set $E \subset \mathbb{R}^2$ (n > 1) into \mathbb{R} , and $\frac{\partial f}{\partial x}(x,y) = 0$ for every $(x,y) \in E$, prove that f depends only of the variable y. Show that this is not true anymore if for instance $E = \{(x,y) \in \mathbb{R}^2 : 1 < x^2 + y^2 < 4\}$.
- 7. State the implicit function theorem. Prove this theorem for the case of a linear map.
- 8. Let M be the collection of continuous maps f on [0,1] with the property:

$$\int_0^{\frac{1}{2}} f(t)dt - \int_{\frac{1}{2}}^1 f(t)dt = 1.$$

Show that M is a closed (with respect to the usual norm on continuous functions $||f||_{\infty} = \sup\{f(x): x \in [0,1]\}$) and convex set, but there is no element in M of minimal norm (i.e. there exist no $f \in M$ such that $||f||_{\infty} = \inf\{||g||_{\infty}; g \in M\}$).

9. Consider the continuous function $f:(0,\infty)\to\mathbb{R}$ with the property $\lim_{n\to\infty}f(nx)=0$ for every $x\in[1,2]$. Use the Baire category theorem to show that $\lim_{x\to\infty}f(x)=0$.