REAL ANALYSIS PRELIMINARY EXAMINATION

May 11, 1995

A. Do all problems.

1. If $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at the point a with differential (total derivative) df(a) show that f has partial derivatives at a. Discuss the relation between the existence of df(a) and the existence of partial derivatives of f at a. Consider these matters for the particular function f which is 0 at the point a = (0,0) and defined by

$$f(x,y) = \frac{xy}{x^2 + y^2}$$

for $(x,y) \neq (0,0)$. Finally, prove or disprove that, in general, differentiability is implied by the existence of all partial derivatives.

2. Let $f_1, f_2,...$ be the sequence of functions defined on \mathbb{R} by

$$f_n(x) = \frac{x}{1 + nx^2}$$

Prove or disprove

- (i) The sequence converges uniformly to a differentiable function f.
- (ii) The sequence of derivatives is convergent.
- (iii) The sequence of derivatives is uniformly convergent.
- (iv) The sequence of derivatives converges to f.
- B. Do all problems.

1. If f is a Lebesgue integrable function on R, use the basic theorems on integration to show that

$$\left(\frac{\sin nx}{nx}\right)^2 f(x)$$

is integrable for n = 1, 2, ..., and to investigate the existence and value of

$$\lim_{n\to\infty}\int_{\mathbb{R}}\left(\frac{\sin nx}{nx}\right)^2f(x)dx.$$

- 2. Let $\{f_n\}$ be a sequence of Lebesgue measurable functions on \mathbb{R} . Show that the set of points where the sequence is convergent is measurable.
- 3. Prove or disprove: The complement in the closed unit interval of an open dense subset has Lebesgue measure 0.
- 4. Consider the formula

$$\Gamma(s) = \int_{0}^{\infty} e^{-t} t^{s-1} dt$$

- (i) Show that $\Gamma(0) = \infty$.
- (ii) Show that the integrand is an L^1 function for any complex s with Re(s) > 0.
- C. Do all problems.
- 1. Let V be a normed linear space, W a dense linear subspace, and f a linear functional on W. Show that f has a continuous linear extension to V and that the extension is necessarily unique iff f is bounded.
- 2. Let H be a complex Hilbert space.
- (i) Prove the Riesz representation theorem.
- (ii) Prove there is a canonical conjugate linear isomorphism of H onto its dual.

3. State and prove the closed graph theorem. You may assume the open mapping theorem.