May 17- 20, 2023
University of Georgia
Athens, Georgia
The Editors of Integers are pleased to announce the Integers Conference 2023. The Integers conferences are international conferences held for the purpose of bringing together mathematicians, students, and others interested in combinatorics and number theory.
Plenary Speakers:…

Georgia Algebraic Geometry Symposium'23
At the University of Georgia, Friday April 28 through Sunday, April 30, 2023.
Georgia Algebraic Geometry Symposium'23 Website
The Georgia Algebraic Geometry Symposium is a conference series, jointly organized by the University of Georgia, Emory University and Georgia Tech.
Invited speakers:
Harold Blum (University of Utah)
Kristin DeVleming (University of Massachusetts Amherst)
Yunfeng Jiang (…

Title: Taut sutured handlebodies as twisted homology products
Abtract: We explore a method for certifying that a sutured manifold is taut, by showing that it is homologically simple - a so-called rational homology product. Most sutured manifolds do not have this form, but do always take the more general form of a twisted homology product, which incorporates a representation of the fundamental group. The question then becomes, how complicated…

Title: Taut Foliations, Positive 3-Braids, and the L-Space Conjecture
Abstract: The L-Space Conjecture is taking the low-dimensional topology community by storm. It aims to relate seemingly distinct Floer homological, algebraic, and geometric properties of a closed 3-manifold Y. In particular, it predicts a 3-manifold Y isn’t ”simple” from the perspective of Heegaard-Floer homology if and only if Y admits a taut foliation. The reverse…

Title: Taut foliations of compact 3-manifolds with constrained boundary slopes
Abstract: A codimension one foliation of a 3-manifold is called taut if there exists a simple closed curve in the manifold that intersects each leaf of the foliation transversally. A surface bundle over a circle is a simple example of a 3-manifold with a taut foliation. Every compact 3-manifold can be obtained from such a surface bundle by Dehn filling the boundary…

Title: Persistently foliar knots
Abstract: A manifold with Heegard-Floer homology of minimal rank is called an L-space, since this is the case for lens spaces and other elliptic manifolds. A taut co-orientable foliation is associated with non-trivial elements of Heegard-Floer homology (by combined results of Eliashberg-Thurston, Ozsv´ath-Szab´o, Kazez-Roberts); hence, if a 3- manifold admits a taut, co-oriented foliation, it is not an L-space…

Title: Surface complexes of Seifert fibered spaces
Abstract: Curve complexes of surfaces provide information about surfaces and 3-manifolds in a variety of ways. Building on the success of curve complexes, we define surface complexes for 3-manifolds. The surface complex naturally decomposes into subcomplexes called Kakimizu complexes. For Seifert fibered spaces the relation between the surface complex and its subcomplexes can be described…

Title: Genus 2 Heegaard splittings and Dehn surgery on tunnel number one knots
Abstract: We generalize a theorem of Homma, Ochiai, and Takahashi, and discuss its relation with the Berge conjecture.

#### Pagination

- Page 1
- Next page